Your browser doesn't support javascript.
loading
New Frontiers in Breast Cancer Imaging: The Rise of AI.
Shamir, Stephanie B; Sasson, Arielle L; Margolies, Laurie R; Mendelson, David S.
Afiliação
  • Shamir SB; Department of Diagnostic, Molecular and Interventional Radiology, The Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.
  • Sasson AL; Department of Diagnostic, Molecular and Interventional Radiology, The Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.
  • Margolies LR; Department of Diagnostic, Molecular and Interventional Radiology, The Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.
  • Mendelson DS; Department of Diagnostic, Molecular and Interventional Radiology, The Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.
Bioengineering (Basel) ; 11(5)2024 May 02.
Article em En | MEDLINE | ID: mdl-38790318
ABSTRACT
Artificial intelligence (AI) has been implemented in multiple fields of medicine to assist in the diagnosis and treatment of patients. AI implementation in radiology, more specifically for breast imaging, has advanced considerably. Breast cancer is one of the most important causes of cancer mortality among women, and there has been increased attention towards creating more efficacious methods for breast cancer detection utilizing AI to improve radiologist accuracy and efficiency to meet the increasing demand of our patients. AI can be applied to imaging studies to improve image quality, increase interpretation accuracy, and improve time efficiency and cost efficiency. AI applied to mammography, ultrasound, and MRI allows for improved cancer detection and diagnosis while decreasing intra- and interobserver variability. The synergistic effect between a radiologist and AI has the potential to improve patient care in underserved populations with the intention of providing quality and equitable care for all. Additionally, AI has allowed for improved risk stratification. Further, AI application can have treatment implications as well by identifying upstage risk of ductal carcinoma in situ (DCIS) to invasive carcinoma and by better predicting individualized patient response to neoadjuvant chemotherapy. AI has potential for advancement in pre-operative 3-dimensional models of the breast as well as improved viability of reconstructive grafts.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Bioengineering (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Bioengineering (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos