Your browser doesn't support javascript.
loading
Construction of bupivacaine-loaded gelatin-based hydrogel delivery system for sciatic nerve block in mice.
Zhang, Qunfei; Liu, Xiang; Liu, Hongqiang; Li, Shufen; An, Zhenping; Feng, Zujian.
Afiliação
  • Zhang Q; The Postgraduate Training Base of Jinzhou Medical University (Xiaogan Hospital Affiliated to Wuhan University of Science and Technology), Xiaogan, China.
  • Liu X; Department of Anesthesiology, Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, China.
  • Liu H; Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China.
  • Li S; Department of Anesthesiology, Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, China.
  • An Z; Department of Anesthesiology, Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, China.
  • Feng Z; The Postgraduate Training Base of Jinzhou Medical University (Xiaogan Hospital Affiliated to Wuhan University of Science and Technology), Xiaogan, China.
J Biomed Mater Res A ; 112(11): 1975-1984, 2024 Nov.
Article em En | MEDLINE | ID: mdl-38804067
ABSTRACT
Peripheral nerve blockade (PNB) is a common treatment to relieve postoperative pain. However, local anesthetics alone have a short duration of action and severe side effects during postoperative analgesia. In order to overcome these limitations, the present study reported an injectable hydrogel with a drug slow-release profile for regional nerve blockade. The injectable hydrogel was prepared by crosslinking with gelatin and NHS-PEG-NHS, which was degradable in the physiological environment and displayed sustainable release of anesthetics locally, thus improving the disadvantage of the high toxicity of local anesthetics. In this regard, we conducted a series of in vitro characterizations and proved that the hydrogel has a porous three-dimensional mesh structure with high drug loading capability, and sustainable drug release profile. And cytotoxicity experiments confirmed the good biocompatibility of the hydrogel. It was shown that using the animal sciatic nerve block model, the analgesic effect was greatly improved in vivo, and there was no obvious evidence of permanent inflammation or nerve damage in the block site's sections. This locally slow-release platform, combined with local anesthetics, is therefore a promising contender for long-acting analgesia.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nervo Isquiático / Bupivacaína / Hidrogéis / Gelatina / Bloqueio Nervoso Limite: Animals Idioma: En Revista: J Biomed Mater Res A Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nervo Isquiático / Bupivacaína / Hidrogéis / Gelatina / Bloqueio Nervoso Limite: Animals Idioma: En Revista: J Biomed Mater Res A Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China