Your browser doesn't support javascript.
loading
Feasibility study of ResNet-50 in the distinction of intraoral neural tumors using histopathological images.
Dos Santos, Giovanna Calabrese; Araújo, Anna Luíza Damaceno; de Amorim, Henrique Alves; Giraldo-Roldán, Daniela; de Sousa-Neto, Sebastião Silvério; Vargas, Pablo Agustin; Kowalski, Luiz Paulo; Santos-Silva, Alan Roger; Lopes, Marcio Ajudarte; Moraes, Matheus Cardoso.
Afiliação
  • Dos Santos GC; Institute of Science and Technology, Federal University of São Paulo (ICT-UNIFESP), São Paulo, Brazil.
  • Araújo ALD; Head and Neck Surgery Department, University of São Paulo Medical School, São Paulo, Brazil.
  • de Amorim HA; Institute of Science and Technology, Federal University of São Paulo (ICT-UNIFESP), São Paulo, Brazil.
  • Giraldo-Roldán D; Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (FOP-UNICAMP), Piracicaba, São Paulo, Brazil.
  • de Sousa-Neto SS; Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (FOP-UNICAMP), Piracicaba, São Paulo, Brazil.
  • Vargas PA; Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (FOP-UNICAMP), Piracicaba, São Paulo, Brazil.
  • Kowalski LP; Head and Neck Surgery Department, University of São Paulo Medical School, São Paulo, Brazil.
  • Santos-Silva AR; Department of Head and Neck Surgery and Otorhinolaryngology, A.C. Camargo Cancer Center, São Paulo, Brazil.
  • Lopes MA; Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (FOP-UNICAMP), Piracicaba, São Paulo, Brazil.
  • Moraes MC; Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (FOP-UNICAMP), Piracicaba, São Paulo, Brazil.
J Oral Pathol Med ; 53(7): 444-450, 2024 Aug.
Article em En | MEDLINE | ID: mdl-38831737
ABSTRACT

BACKGROUND:

Neural tumors are difficult to distinguish based solely on cellularity and often require immunohistochemical staining to aid in identifying the cell lineage. This article investigates the potential of a Convolutional Neural Network for the histopathological classification of the three most prevalent benign neural tumor types neurofibroma, perineurioma, and schwannoma.

METHODS:

A model was developed, trained, and evaluated for classification using the ResNet-50 architecture, with a database of 30 whole-slide images stained in hematoxylin and eosin (106, 782 patches were generated from and divided among the training, validation, and testing subsets, with strategies to avoid data leakage).

RESULTS:

The model achieved an accuracy of 70% (64% normalized), and showed satisfactory results for differentiating two of the three classes, reaching approximately 97% and 77% as true positives for neurofibroma and schwannoma classes, respectively, and only 7% for perineurioma class. The AUROC curves for neurofibroma and schwannoma classes was 0.83%, and 0.74% for perineurioma. However, the specificity rate for the perineurioma class was greater (83%) than in the other two classes (neurofibroma with 61%, and schwannoma with 60%).

CONCLUSION:

This investigation demonstrated significant potential for proficient performance with a limitation regarding the perineurioma class (the limited feature variability observed contributed to a lower performance).
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Bucais / Estudos de Viabilidade / Redes Neurais de Computação / Neoplasias de Bainha Neural / Neurilemoma / Neurofibroma Limite: Humans Idioma: En Revista: J Oral Pathol Med Assunto da revista: ODONTOLOGIA / PATOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Bucais / Estudos de Viabilidade / Redes Neurais de Computação / Neoplasias de Bainha Neural / Neurilemoma / Neurofibroma Limite: Humans Idioma: En Revista: J Oral Pathol Med Assunto da revista: ODONTOLOGIA / PATOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil