Your browser doesn't support javascript.
loading
Protein vicinal thiols as intrinsic probes of brain redox states in health, aging, and ischemia.
Foley, Timothy D; Huang, Wen C; Petsche, Emily A; Fleming, Emily R; Hornickle, James C.
Afiliação
  • Foley TD; Biochemistry Program, Department of Chemistry, University of Scranton, Scranton, PA, 18510, USA. foleyt2@scranton.edu.
  • Huang WC; Biochemistry Program, Department of Chemistry, University of Scranton, Scranton, PA, 18510, USA.
  • Petsche EA; Biochemistry Program, Department of Chemistry, University of Scranton, Scranton, PA, 18510, USA.
  • Fleming ER; Biochemistry Program, Department of Chemistry, University of Scranton, Scranton, PA, 18510, USA.
  • Hornickle JC; Biochemistry Program, Department of Chemistry, University of Scranton, Scranton, PA, 18510, USA.
Metab Brain Dis ; 39(5): 929-940, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38848024
ABSTRACT
The nature of brain redox metabolism in health, aging, and disease remains to be fully established. Reversible oxidations, to disulfide bonds, of closely spaced (vicinal) protein thiols underlie the catalytic maintenance of redox homeostasis by redoxin enzymes, including thioredoxin peroxidases (peroxiredoxins), and have been implicated in redox buffering and regulation. We propose that non-peroxidase proteins containing vicinal thiols that are responsive to physiological redox perturbations may serve as intrinsic probes of brain redox metabolism. Using redox phenylarsine oxide (PAO)-affinity chromatography, we report that PAO-binding vicinal thiols on creatine kinase B and alpha-enolase from healthy rat brains were preferentially oxidized compared to other selected proteins, including neuron-specific (gamma) enolase, under conditions designed to trap in vivo protein thiol redox states. Moreover, measures of the extents of oxidations of vicinal thiols on total protein, and on creatine kinase B and alpha-enolase, showed that vicinal thiol-linked redox states were stable over the lifespan of rats and revealed a transient reductive shift in these redox couples following decapitation-induced global ischemia. Finally, formation of disulfide-linked complexes between peroxiredoxin-2 and brain proteins was demonstrated on redox blots, supporting a link between protein vicinal thiol redox states and the peroxidase activities of peroxiredoxins. The implications of these findings with respect to underappreciated aspects of brain redox metabolism in health, aging, and ischemia are discussed.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxirredução / Compostos de Sulfidrila / Encéfalo / Envelhecimento / Isquemia Encefálica Limite: Animals Idioma: En Revista: Metab Brain Dis Assunto da revista: CEREBRO / METABOLISMO Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxirredução / Compostos de Sulfidrila / Encéfalo / Envelhecimento / Isquemia Encefálica Limite: Animals Idioma: En Revista: Metab Brain Dis Assunto da revista: CEREBRO / METABOLISMO Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos