Your browser doesn't support javascript.
loading
Spatial and temporal variation in respiratory syncytial virus (RSV) subtype RNA in wastewater and relation to clinical specimens.
Zambrana, Winnie; Huang, ChunHong; Solis, Daniel; Sahoo, Malaya K; Pinsky, Benjamin A; Boehm, Alexandria B.
Afiliação
  • Zambrana W; Department of Civil & Environmental Engineering, Stanford University, Stanford, California, USA.
  • Huang C; Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.
  • Solis D; Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.
  • Sahoo MK; Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.
  • Pinsky BA; Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.
  • Boehm AB; Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.
mSphere ; 9(7): e0022424, 2024 Jul 30.
Article em En | MEDLINE | ID: mdl-38926903
ABSTRACT
Respiratory syncytial virus (RSV) causes a large burden of respiratory illness globally. It has two subtypes, RSV A and RSV B, but little is known regarding the predominance of these subtypes during different seasons and their impact on morbidity and mortality. Using molecular methods, we quantified RSV A and RSV B RNA in wastewater solids across multiple seasons and metropolitan areas to gain insight into the predominance of RSV subtypes. We determined the predominant subtype for each group using the proportion of RSV A to total RSV (RSV A + RSV B) in each wastewater sample (PA,WW) and conducted a comparative analysis temporally, spatially, and against clinical specimens. A median PA,WW of 0.00 in the first season and 0.58 in the second season indicated a temporal shift in the predominant subtype. Spatially, while we observed dominance of the same subtype, PA,WW was higher in some areas (PA,WW = 0.58-0.88). The same subtype predominated in wastewater and clinical samples, but clinical samples showed higher levels of RSV A (RSV A positivity in clinical samples = 0.79, median PA,WW = 0.58). These results suggest that wastewater, alongside clinical data, holds promise for enhanced subtype surveillance.IMPORTANCERespiratory syncytial virus (RSV) causes a large burden of respiratory illness globally. It has two subtypes, RSV A and RSV B, but little is known regarding the predominance of these subtypes during different seasons and their impact on morbidity and mortality. The study illustrates that information on subtype predominance can be gleaned from wastewater. As a biological composite sample from the entire contributing population, wastewater monitoring of RSV A and B can complement clinical surveillance of RSV.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estações do Ano / RNA Viral / Vírus Sincicial Respiratório Humano / Infecções por Vírus Respiratório Sincicial / Águas Residuárias Limite: Humans Idioma: En Revista: MSphere Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estações do Ano / RNA Viral / Vírus Sincicial Respiratório Humano / Infecções por Vírus Respiratório Sincicial / Águas Residuárias Limite: Humans Idioma: En Revista: MSphere Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos