Your browser doesn't support javascript.
loading
Phosphate-Buffered Saline and Dimethyl Sulfoxide Enhance the Antivenom Action of Ruthenium Chloride against Crotalus atrox Venom in Human Plasma-A Preliminary Report.
Nielsen, Vance G.
Afiliação
  • Nielsen VG; Department of Anesthesiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article em En | MEDLINE | ID: mdl-38928132
ABSTRACT
Ruthenium chloride (RuCl3) is widely utilized for synthesis and catalysis of numerous compounds in academia and industry and is utilized as a key molecule in a variety of compounds with medical applications. Interestingly, RuCl3 has been demonstrated to modulate human plasmatic coagulation and serves as a constituent of a compounded inorganic antivenom that neutralizes the coagulopathic effects of snake venom in vitro and in vivo. Using thrombelastography, this investigation sought to determine if RuCl3 inhibition of the fibrinogenolytic effects of Crotalus atrox venom could be modulated by vehicle composition in human plasma. Venom was exposed to RuCl3 in 0.9% NaCl, phosphate-buffered saline (PBS), or 0.9% NaCl containing 1% dimethyl sulfoxide (DMSO). RuCl3 inhibited venom-mediated delay in the onset of thrombus formation, decreased clot growth velocity, and decreased clot strength. PBS and DMSO enhanced the effects of RuCl3. It is concluded that while a Ru-based cation is responsible for significant inhibition of venom activity, a combination of Ru-based ions containing phosphate and DMSO enhances RuCl3-mediated venom inhibition. Additional investigation is indicated to determine what specific Ru-containing molecules cause venom inhibition and what other combinations of inorganic/organic compounds may enhance the antivenom effects of RuCl3.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Coagulação Sanguínea / Antivenenos / Dimetil Sulfóxido / Crotalus / Venenos de Crotalídeos Limite: Animals / Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Coagulação Sanguínea / Antivenenos / Dimetil Sulfóxido / Crotalus / Venenos de Crotalídeos Limite: Animals / Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos