Your browser doesn't support javascript.
loading
Representing mutations for predicting cancer drug response.
Wall, Patrick; Ideker, Trey.
Afiliação
  • Wall P; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States.
  • Ideker T; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States.
Bioinformatics ; 40(Suppl 1): i160-i168, 2024 06 28.
Article em En | MEDLINE | ID: mdl-38940147
ABSTRACT
MOTIVATION Predicting cancer drug response requires a comprehensive assessment of many mutations present across a tumor genome. While current drug response models generally use a binary mutated/unmutated indicator for each gene, not all mutations in a gene are equivalent.

RESULTS:

Here, we construct and evaluate a series of predictive models based on leading methods for quantitative mutation scoring. Such methods include VEST4 and CADD, which score the impact of a mutation on gene function, and CHASMplus, which scores the likelihood a mutation drives cancer. The resulting predictive models capture cellular responses to dabrafenib, which targets BRAF-V600 mutations, whereas models based on binary mutation status do not. Performance improvements generalize to other drugs, extending genetic indications for PIK3CA, ERBB2, EGFR, PARP1, and ABL1 inhibitors. Introducing quantitative mutation features in drug response models increases performance and mechanistic understanding. AVAILABILITY AND IMPLEMENTATION Code and example datasets are available at https//github.com/pgwall/qms.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Mutação / Neoplasias / Antineoplásicos Limite: Humans Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Mutação / Neoplasias / Antineoplásicos Limite: Humans Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos