Your browser doesn't support javascript.
loading
Impaired GK-GKRP interaction rather than direct GK activation worsens lipid profiles and contributes to long-term complications: a Mendelian randomization study.
Wang, Ke; Shi, Mai; Luk, Andrea O Y; Kong, Alice P S; Ma, Ronald C W; Li, Changhong; Chen, Li; Chow, Elaine; Chan, Juliana C N.
Afiliação
  • Wang K; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China.
  • Shi M; Hua Medicine (Shanghai) Co., Ltd., Shanghai, China.
  • Luk AOY; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China.
  • Kong APS; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China.
  • Ma RCW; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China.
  • Li C; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China.
  • Chen L; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China.
  • Chow E; Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China.
  • Chan JCN; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China.
Cardiovasc Diabetol ; 23(1): 228, 2024 Jun 29.
Article em En | MEDLINE | ID: mdl-38951793
ABSTRACT

BACKGROUND:

Glucokinase (GK) plays a key role in glucose metabolism. In the liver, GK is regulated by GK regulatory protein (GKRP) with nuclear sequestration at low plasma glucose level. Some GK activators (GKAs) disrupt GK-GKRP interaction which increases hepatic cytoplasmic GK level. Excess hepatic GK activity may exceed the capacity of glycogen synthesis with excess triglyceride formation. It remains uncertain whether hypertriglyceridemia associated with some GKAs in previous clinical trials was due to direct GK activation or impaired GK-GKRP interaction.

METHODS:

Using publicly available genome-wide association study summary statistics, we selected independent genetic variants of GCKR and GCK associated with fasting plasma glucose (FPG) as instrumental variables, to mimic the effects of impaired GK-GKRP interaction and direct GK activation, respectively. We applied two-sample Mendelian Randomization (MR) framework to assess their causal associations with lipid-related traits, risks of metabolic dysfunction-associated steatotic liver disease (MASLD) and cardiovascular diseases. We verified these findings in one-sample MR analysis using individual-level statistics from the Hong Kong Diabetes Register (HKDR).

RESULTS:

Genetically-proxied impaired GK-GKRP interaction increased plasma triglycerides, low-density lipoprotein cholesterol and apolipoprotein B levels with increased odds ratio (OR) of 14.6 (95% CI 4.57-46.4) per 1 mmol/L lower FPG for MASLD and OR of 2.92 (95% CI 1.78-4.81) for coronary artery disease (CAD). Genetically-proxied GK activation was associated with decreased risk of CAD (OR 0.69, 95% CI 0.54-0.88) and not with dyslipidemia. One-sample MR validation in HKDR showed consistent results.

CONCLUSIONS:

Impaired GK-GKRP interaction, rather than direct GK activation, may worsen lipid profiles and increase risks of MASLD and CAD. Development of future GKAs should avoid interfering with GK-GKRP interaction.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Glicemia / Predisposição Genética para Doença / Proteínas Adaptadoras de Transdução de Sinal / Estudo de Associação Genômica Ampla / Análise da Randomização Mendeliana / Glucoquinase Limite: Humans Idioma: En Revista: Cardiovasc Diabetol Assunto da revista: ANGIOLOGIA / CARDIOLOGIA / ENDOCRINOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Glicemia / Predisposição Genética para Doença / Proteínas Adaptadoras de Transdução de Sinal / Estudo de Associação Genômica Ampla / Análise da Randomização Mendeliana / Glucoquinase Limite: Humans Idioma: En Revista: Cardiovasc Diabetol Assunto da revista: ANGIOLOGIA / CARDIOLOGIA / ENDOCRINOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China