Your browser doesn't support javascript.
loading
A multi-modal, asymmetric, weighted, and signed description of anatomical connectivity.
Tanner, Jacob; Faskowitz, Joshua; Teixeira, Andreia Sofia; Seguin, Caio; Coletta, Ludovico; Gozzi, Alessandro; Misic, Bratislav; Betzel, Richard F.
Afiliação
  • Tanner J; Cognitive Science Program, Indiana University, Bloomington, IN, USA.
  • Faskowitz J; School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA.
  • Teixeira AS; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
  • Seguin C; LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
  • Coletta L; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
  • Gozzi A; Fondazione Bruno Kessler, Trento, Italy.
  • Misic B; Functional Neuroimaging Lab, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy.
  • Betzel RF; McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
Nat Commun ; 15(1): 5865, 2024 Jul 12.
Article em En | MEDLINE | ID: mdl-38997282
ABSTRACT
The macroscale connectome is the network of physical, white-matter tracts between brain areas. The connections are generally weighted and their values interpreted as measures of communication efficacy. In most applications, weights are either assigned based on imaging features-e.g. diffusion parameters-or inferred using statistical models. In reality, the ground-truth weights are unknown, motivating the exploration of alternative edge weighting schemes. Here, we explore a multi-modal, regression-based model that endows reconstructed fiber tracts with directed and signed weights. We find that the model fits observed data well, outperforming a suite of null models. The estimated weights are subject-specific and highly reliable, even when fit using relatively few training samples, and the networks maintain a number of desirable features. In summary, we offer a simple framework for weighting connectome data, demonstrating both its ease of implementation while benchmarking its utility for typical connectome analyses, including graph theoretic modeling and brain-behavior associations.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Conectoma / Substância Branca Limite: Adult / Female / Humans / Male Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Conectoma / Substância Branca Limite: Adult / Female / Humans / Male Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos