Your browser doesn't support javascript.
loading
AI-NERD: Elucidation of relaxation dynamics beyond equilibrium through AI-informed X-ray photon correlation spectroscopy.
Horwath, James P; Lin, Xiao-Min; He, Hongrui; Zhang, Qingteng; Dufresne, Eric M; Chu, Miaoqi; Sankaranarayanan, Subramanian K R S; Chen, Wei; Narayanan, Suresh; Cherukara, Mathew J.
Afiliação
  • Horwath JP; Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA. jhorwath@anl.gov.
  • Lin XM; Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA.
  • He H; Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, USA.
  • Zhang Q; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
  • Dufresne EM; Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
  • Chu M; Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
  • Sankaranarayanan SKRS; Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
  • Chen W; Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA.
  • Narayanan S; Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, IL, USA.
  • Cherukara MJ; Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, USA.
Nat Commun ; 15(1): 5945, 2024 Jul 15.
Article em En | MEDLINE | ID: mdl-39009571
ABSTRACT
Understanding and interpreting dynamics of functional materials in situ is a grand challenge in physics and materials science due to the difficulty of experimentally probing materials at varied length and time scales. X-ray photon correlation spectroscopy (XPCS) is uniquely well-suited for characterizing materials dynamics over wide-ranging time scales. However, spatial and temporal heterogeneity in material behavior can make interpretation of experimental XPCS data difficult. In this work, we have developed an unsupervised deep learning (DL) framework for automated classification of relaxation dynamics from experimental data without requiring any prior physical knowledge of the system. We demonstrate how this method can be used to accelerate exploration of large datasets to identify samples of interest, and we apply this approach to directly correlate microscopic dynamics with macroscopic properties of a model system. Importantly, this DL framework is material and process agnostic, marking a concrete step towards autonomous materials discovery.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos