Your browser doesn't support javascript.
loading
Universal scaling in far-from-equilibrium quantum systems: An equivalent differential approach.
Madeira, Lucas; García-Orozco, Arnol D; Moreno-Armijos, Michelle A; Fritsch, Amilson R; Bagnato, Vanderlei S.
Afiliação
  • Madeira L; Física e Ciência dos Materiais, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13560-970, Brazil.
  • García-Orozco AD; Física e Ciência dos Materiais, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13560-970, Brazil.
  • Moreno-Armijos MA; Física e Ciência dos Materiais, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13560-970, Brazil.
  • Fritsch AR; Física e Ciência dos Materiais, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13560-970, Brazil.
  • Bagnato VS; Física e Ciência dos Materiais, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13560-970, Brazil.
Proc Natl Acad Sci U S A ; 121(30): e2404828121, 2024 Jul 23.
Article em En | MEDLINE | ID: mdl-39024112
ABSTRACT
Recent progress in out-of-equilibrium closed quantum systems has significantly advanced the understanding of mechanisms behind their evolution toward thermalization. Notably, the concept of nonthermal fixed points (NTFPs)-responsible for the emergence of spatiotemporal universal scaling in far-from-equilibrium systems-has played a crucial role in both theoretical and experimental investigations. In this work, we introduce a differential equation that has the universal scaling associated with NTFPs as a solution. The advantage of working with a differential equation, rather than only with its solution, is that we can extract several insightful properties not necessarily present in the solution alone. How the differential equation is derived allows physical interpretation of the universal exponents in terms of the time dependence of the amplitude of the distributions and their momentum scaling. Employing two limiting cases of the equation, we determined the universal exponents related to the scaling using the distributions near just two momentum values. We established a solid agreement with previous investigations by validating this approach with three distinct physical systems. This consistency highlights the universal nature of scaling due to NTFPs and emphasizes the predictive capabilities of the proposed differential equation. Moreover, under specific conditions, the equation predicts a power-law related to the ratio of the two universal exponents, leading to implications concerning particle and energy transport. This suggests that the observed power-laws in far-from-equilibrium turbulent fluids could be related to the universal scaling due to NTFPs, potentially offering insights into the study of turbulence.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil