Your browser doesn't support javascript.
loading
Non-complete recovery of temporal lobe white matter diffusion metrics at one year Post-Radiotherapy: Implications for Radiation-Induced necrosis risk.
Pan, Jie; Qiu, Ziru; Fu, Gui; Liang, Jiahui; Li, Yunpeng; Feng, Yanqiu; Zhang, Xinyuan; Lv, Xiaofei.
Afiliação
  • Pan J; Department of Medical Imaging, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Cen
  • Qiu Z; School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China.
  • Fu G; Department of Medical Imaging, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Cen
  • Liang J; Department of Medical Imaging, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Cen
  • Li Y; Department of Medical Imaging, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Cen
  • Feng Y; School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China; Guangdong-Hong
  • Zhang X; School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China. Electronic addr
  • Lv X; Department of Medical Imaging, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Cen
Radiother Oncol ; 199: 110420, 2024 Jul 18.
Article em En | MEDLINE | ID: mdl-39029591
ABSTRACT

BACKGROUND:

Temporal lobe (TL) white matter (WM) injuries are often seen early after radiotherapy (RT) in nasopharyngeal carcinoma patients (NPCs), which fail to fully recover in later stages, exhibiting a "non-complete recovery pattern". Herein, we explored the correlation between non-complete recovery WM injuries and TL necrosis (TLN), identifying dosimetric predictors for TLN-related high-risk WM injuries.

METHODS:

We longitudinally examined 161 NPCs and 19 healthy controls employing multi-shell diffusion MRI. Automated fiber-tract quantification quantified diffusion metrics within TL WM tract segments. ANOVA identified non-complete recovery WM tract segments one-year post-RT. Cox regression models discerned TLN risk factors utilizing non-complete recovery diffusion metrics. Normal tissue complication probability (NTCP) models and dose-response analysis further scrutinized RT-related toxicity to high-risk WM tract segments.

RESULTS:

Seven TL WM tract segments exhibited a "non-complete recovery pattern". Cox regression analysis identified mean diffusivity of the left uncinate fasciculus segment 1, neurite density index (NDI) of the left cingulum hippocampus segment 1, and NDI of the right inferior longitudinal fasciculus segment 1 as TLN risk predictors (hazard ratios [HRs] with confidence interval [CIs] 1.45 [1.17-1.81], 1.07 [1.00-1.15], and 1.15 [1.03-1.30], respectively; all P-values < 0.05). In NTCP models, D10cc.L, D20cc.L and D10cc.R demonstrated superior performance, with TD50 of 37.22 Gy, 24.96 Gy and 37.28 Gy, respectively.

CONCLUSIONS:

Our findings underscore the significance of the "non-complete recovery pattern" in TL WM tract segment injuries during TLN development. Understanding TLN-related high-risk WM tract segments and their tolerance doses could facilitate early intervention in TLN and improve RT protocols.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Radiother Oncol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Radiother Oncol Ano de publicação: 2024 Tipo de documento: Article