Your browser doesn't support javascript.
loading
Exploring the Origins and Evolution of Oxygenic and Anoxygenic Photosynthesis in Deeply Branched Cyanobacteriota.
Tan, Sha; Liu, Lan; Jiao, Jian-Yu; Li, Meng-Meng; Hu, Chao-Jian; Lv, Ai-Ping; Qi, Yan-Ling; Li, Yu-Xian; Rao, Yang-Zhi; Qu, Yan-Ni; Jiang, Hong-Chen; Soo, Rochelle M; Evans, Paul N; Hua, Zheng-Shuang; Li, Wen-Jun.
Afiliação
  • Tan S; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
  • Liu L; Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China.
  • Jiao JY; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China.
  • Li MM; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
  • Hu CJ; Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China.
  • Lv AP; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China.
  • Qi YL; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
  • Li YX; Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China.
  • Rao YZ; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China.
  • Qu YN; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
  • Jiang HC; Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China.
  • Soo RM; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China.
  • Evans PN; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
  • Hua ZS; Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China.
  • Li WJ; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China.
Mol Biol Evol ; 41(8)2024 Aug 02.
Article em En | MEDLINE | ID: mdl-39041196
ABSTRACT
Cyanobacteriota, the sole prokaryotes capable of oxygenic photosynthesis (OxyP), occupy a unique and pivotal role in Earth's history. While the notion that OxyP may have originated from Cyanobacteriota is widely accepted, its early evolution remains elusive. Here, by using both metagenomics and metatranscriptomics, we explore 36 metagenome-assembled genomes from hot spring ecosystems, belonging to two deep-branching cyanobacterial orders Thermostichales and Gloeomargaritales. Functional investigation reveals that Thermostichales encode the crucial thylakoid membrane biogenesis protein, vesicle-inducing protein in plastids 1 (Vipp1). Based on the phylogenetic results, we infer that the evolution of the thylakoid membrane predates the divergence of Thermostichales from other cyanobacterial groups and that Thermostichales may be the most ancient lineage known to date to have inherited this feature from their common ancestor. Apart from OxyP, both lineages are potentially capable of sulfide-driven AnoxyP by linking sulfide oxidation to the photosynthetic electron transport chain. Unexpectedly, this AnoxyP capacity appears to be an acquired feature, as the key gene sqr was horizontally transferred from later-evolved cyanobacterial lineages. The presence of two D1 protein variants in Thermostichales suggests the functional flexibility of photosystems, ensuring their survival in fluctuating redox environments. Furthermore, all MAGs feature streamlined phycobilisomes with a preference for capturing longer-wavelength light, implying a unique evolutionary trajectory. Collectively, these results reveal the photosynthetic flexibility in these early-diverging cyanobacterial lineages, shedding new light on the early evolution of Cyanobacteriota and their photosynthetic processes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fotossíntese / Cianobactérias Idioma: En Revista: Mol Biol Evol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fotossíntese / Cianobactérias Idioma: En Revista: Mol Biol Evol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2024 Tipo de documento: Article