Your browser doesn't support javascript.
loading
Staphylococcus aureus wraps around Candida albicans and synergistically escapes from Neutrophil extracellular traps.
Jing, Qi; Liu, Rui; Jiang, Qingsong; Liu, Yingshuang; He, Jinzhi; Zhou, Xuedong; Yu, Ollie Yiru; Chu, Chun-Hung; Cheng, Lei; Ren, Biao; Li, Mingyun.
Afiliação
  • Jing Q; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China.
  • Liu R; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China.
  • Jiang Q; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China.
  • Liu Y; Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China.
  • He J; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China.
  • Zhou X; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China.
  • Yu OY; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
  • Chu CH; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China.
  • Cheng L; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
  • Ren B; Faculty of Dentistry, the University of Hong Kong, Hong Kong, Hong Kong SAR, China.
  • Li M; Faculty of Dentistry, the University of Hong Kong, Hong Kong, Hong Kong SAR, China.
Front Immunol ; 15: 1422440, 2024.
Article em En | MEDLINE | ID: mdl-39050841
ABSTRACT

Background:

NETs, a unique neutrophil immune mechanism, are vital in defending against microbial invasions. Understanding the mechanisms of co-infection by Candida albicans and Staphylococcus aureus, which often leads to higher mortality and poorer prognosis, is crucial for studying infection progression.

Methods:

In our study, we established a mouse model of subcutaneous infection to characterize the inflammation induced by co-infection. By purifying and extracting NETs to interact with microorganisms, we delve into the differences in their interactions with various microbial species. Additionally, we investigated the differences in NETs production by neutrophils in response to single or mixed microorganisms through the interaction between neutrophils and these microorganisms. Furthermore, we analyzed the gene expression differences during co-infection using transcriptomics.

Results:

In vivo, C. albicans infections tend to aggregate, while S. aureus infections are more diffuse. In cases of co-infection, S. aureus adheres to and wraps C. albicans. NETs exhibit strong killing capability against C. albicans but weaker efficacy against S. aureus. When NETs interact with mixed microorganisms, they preferentially target and kill the outer layer of S. aureus. In the early stages, neutrophils primarily rely on phagocytosis to kill S. aureus, but as the bacteria accumulate, they stimulate neutrophils to produce NETs. Interestingly, in the presence of neutrophils, S. aureus promotes the proliferation and hyphal growth of C. albicans.

Conclusion:

Our research has showed substantial differences in the progression of co-infections compared to single-microbial infections, thereby providing scientific evidence for NETs as potential therapeutic targets in the treatment of co-infections.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infecções Estafilocócicas / Staphylococcus aureus / Candida albicans / Candidíase / Coinfecção / Armadilhas Extracelulares / Neutrófilos Limite: Animals Idioma: En Revista: Front Immunol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infecções Estafilocócicas / Staphylococcus aureus / Candida albicans / Candidíase / Coinfecção / Armadilhas Extracelulares / Neutrófilos Limite: Animals Idioma: En Revista: Front Immunol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China