Zn-ion ultrafluidity via bioinspired ion channel for ultralong lifespan Zn-ion battery.
Natl Sci Rev
; 11(8): nwae199, 2024 Aug.
Article
em En
| MEDLINE
| ID: mdl-39050980
ABSTRACT
Rechargeable aqueous Zn-ion batteries have been deemed a promising energy storage device. However, the dendrite growth and side reactions have hindered their practical application. Herein, inspired by the ultrafluidic and K+ ion-sieving flux through enzyme-gated potassium channels (KcsA) in biological plasma membranes, a metal-organic-framework (MOF-5) grafted with -ClO4 groups (MOF-ClO4) as functional enzymes is fabricated to mimic the ultrafluidic lipid-bilayer structure for gating Zn2+ 'on' and anions 'off' states. The MOF-ClO4 achieved perfect Zn2+/SO4 2- selectivity (â¼10), enhanced Zn2+ transfer number ([Formula see text]) and the ultrafluidic Zn2+ flux (1.9 × 10-3 vs. 1.67 mmol m-2 s-1 for KcsA). The symmetric cells based on MOF-ClO4 achieve a lifespan of over 5400 h at 10 mA cm-2/20 mAh cm-2. Specifically, the performance of the PMCl-Zn//V2O5 pouch cell keeps 81% capacity after 2000 cycles at 1 A g-1. The regulated ion transport, by learning from a biological plasma membrane, opens a new avenue towards ultralong lifespan aqueous batteries.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Natl Sci Rev
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Austrália