Your browser doesn't support javascript.
loading
FeN4-Embedded Graphene as a Highly Sensitive and Selective Single-Atom Sensor for Reaction Intermediates of Electrochemical CO2 Reduction.
Cai, Yuqi; Zhou, Xiaocheng; Wang, Yu; Li, Yafei.
Afiliação
  • Cai Y; Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
  • Zhou X; Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
  • Wang Y; Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
  • Li Y; Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
ACS Omega ; 9(29): 32167-32174, 2024 Jul 23.
Article em En | MEDLINE | ID: mdl-39072066
ABSTRACT
Exploring effective ways to detect intermediates during the electrochemical CO2 reduction reaction (CO2RR) process is pivotal for understanding reaction pathways and underlying mechanisms. Recently, two-dimensional FeN4-embedded graphene has received increasing attention as a promising catalyst for CO2RR. Here, by means of density functional theory computations combined with the non-equilibrium Green's function (NEGF) method, we proposed a detection device to evaluate the performance of FeN4-embedded graphene in intermediates detection during the CO2RR process. Our results reveal that the four key intermediates, including *COOH, *OCHO, *CHO, and *COH, can be chemisorbed on FeN4-embedded graphene with high adsorption energies and appropriate charge transfer. The computed current-voltage (I-V) characteristics and transmission spectra suggest that the adsorption of these intermediates induces significant type-dependent changes in currents and transmission coefficients of FeN4-embedded graphene. Remarkably, the FeN4-embedded graphene is more sensitive to *COOH and *COH than to *OCHO and *CHO within the entire bias window. Consequently, our theoretical study indicates that the FeN4-embedded graphene can effectively detect the key intermediates during the CO2RR process, providing a practical scheme for identifying catalytic reaction pathways and elucidating underlying reaction mechanisms.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Omega Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Omega Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China