Your browser doesn't support javascript.
loading
Integrative phenotyping analyses reveal the relevance of the phyB-PIF4 pathway in Arabidopsis thaliana reproductive organs at high ambient temperature.
Ebrahimi Naghani, Shekoufeh; Smeringai, Ján; Pleskacová, Barbora; Dobisová, Tereza; Panzarová, Klára; Pernisová, Markéta; Robert, Hélène S.
Afiliação
  • Ebrahimi Naghani S; Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic.
  • Smeringai J; Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic.
  • Pleskacová B; Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic.
  • Dobisová T; Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic.
  • Panzarová K; PSI - Photon Systems Instruments, Drasov, 66424, Czech Republic.
  • Pernisová M; Labdeers s.r.o, Boskovice, 68001, Czech Republic.
  • Robert HS; PSI - Photon Systems Instruments, Drasov, 66424, Czech Republic.
BMC Plant Biol ; 24(1): 721, 2024 Jul 29.
Article em En | MEDLINE | ID: mdl-39075366
ABSTRACT

BACKGROUND:

The increasing ambient temperature significantly impacts plant growth, development, and reproduction. Uncovering the temperature-regulating mechanisms in plants is of high importance, for increasing our fundamental understanding of plant thermomorphogenesis, for its potential in applied science, and for aiding plant breeders in improving plant thermoresilience. Thermomorphogenesis, the developmental response to warm temperatures, has been primarily studied in seedlings and in the regulation of flowering time. PHYTOCHROME B and PHYTOCHROME-INTERACTING FACTORs (PIFs), particularly PIF4, are key components of this response. However, the thermoresponse of other adult vegetative tissues and reproductive structures has not been systematically evaluated, especially concerning the involvement of phyB and PIFs.

RESULTS:

We screened the temperature responses of the wild type and several phyB-PIF4 pathway Arabidopsis mutant lines in combined and integrative phenotyping platforms for root growth in soil, shoot, inflorescence, and seed. Our findings demonstrate that phyB-PIF4 is generally involved in the relay of temperature signals throughout plant development, including the reproductive stage. Furthermore, we identified correlative responses to high ambient temperature between shoot and root tissues. This integrative and automated phenotyping was complemented by monitoring the changes in transcript levels in reproductive organs. Transcriptomic profiling of the pistils from plants grown under high ambient temperature identified key elements that may provide insight into the molecular mechanisms behind temperature-induced reduced fertilization rate. These include a downregulation of auxin metabolism, upregulation of genes involved auxin signalling, miRNA156 and miRNA160 pathways, and pollen tube attractants.

CONCLUSIONS:

Our findings demonstrate that phyB-PIF4 involvement in the interpretation of temperature signals is pervasive throughout plant development, including processes directly linked to reproduction.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenótipo / Arabidopsis / Proteínas de Arabidopsis / Fatores de Transcrição Hélice-Alça-Hélice Básicos / Fitocromo B Idioma: En Revista: BMC Plant Biol Assunto da revista: BOTANICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: República Tcheca

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenótipo / Arabidopsis / Proteínas de Arabidopsis / Fatores de Transcrição Hélice-Alça-Hélice Básicos / Fitocromo B Idioma: En Revista: BMC Plant Biol Assunto da revista: BOTANICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: República Tcheca