Your browser doesn't support javascript.
loading
A data-driven approach to detect upper limb functional use during daily life in breast cancer survivors using wrist-worn sensors.
Emmerzaal, Jill; Filtjens, Benjamin; Vets, Nieke; Vanrumste, Bart; Smeets, Ann; De Groef, An; De Baets, Liesbet.
Afiliação
  • Emmerzaal J; Department of Rehabilitation Sciences, KU Leuven, 3000, Leuven, Belgium.
  • Filtjens B; Department of Electrical Engineering (ESAT), KU Leuven, 3000, Leuven, Belgium.
  • Vets N; Department of Mechanical Engineering, KU Leuven, 3000, Leuven, Belgium.
  • Vanrumste B; Department of Rehabilitation Sciences, KU Leuven, 3000, Leuven, Belgium.
  • Smeets A; Department of Electrical Engineering (ESAT), KU Leuven, 3000, Leuven, Belgium.
  • De Groef A; Department of Surgical Onocology, University Hospitals Leuven, KU Leuven, 3000, Leuven, Belgium.
  • De Baets L; Department of Rehabilitation Sciences, KU Leuven, 3000, Leuven, Belgium. an.degroef@kuleuven.be.
Sci Rep ; 14(1): 18165, 2024 08 06.
Article em En | MEDLINE | ID: mdl-39107354
ABSTRACT
To gain insights into the impact of upper limb (UL) dysfunctions after breast cancer treatment, this study aimed to develop a temporal convolutional neural network (TCN) to detect functional daily UL use in breast cancer survivors using data from a wrist-worn accelerometer. A pre-existing dataset of 10 breast cancer survivors was used that contained raw 3-axis acceleration data and simultaneously recorded video data, captured during four daily life activities. The input of our TCN consists of a 3-axis acceleration sequence with a receptive field of 243 samples. The 4 ResNet TCN blocks perform dilated temporal convolutions with a kernel of size 3 and a dilation rate that increases by a factor of 3 after each iteration. Outcomes of interest were functional UL use (minutes) and percentage UL use. We found strong agreement between the video and predicted data for functional UL use (ICC = 0.975) and moderately strong agreement for %UL use (ICC = 0.794). The TCN model overestimated the functional UL use by 0.71 min and 3.06%. Model performance showed good accuracy, f1, and AUPRC scores (0.875, 0.909, 0.954, respectively). In conclusion, using wrist-worn accelerometer data, the TCN model effectively identified functional UL use in daily life among breast cancer survivors.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Punho / Neoplasias da Mama / Atividades Cotidianas / Extremidade Superior / Acelerometria / Dispositivos Eletrônicos Vestíveis / Sobreviventes de Câncer Limite: Adult / Aged / Female / Humans / Middle aged Idioma: En Revista: Sci Rep Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Bélgica

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Punho / Neoplasias da Mama / Atividades Cotidianas / Extremidade Superior / Acelerometria / Dispositivos Eletrônicos Vestíveis / Sobreviventes de Câncer Limite: Adult / Aged / Female / Humans / Middle aged Idioma: En Revista: Sci Rep Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Bélgica