Your browser doesn't support javascript.
loading
Oscillatory hypoxia induced gene expression predicts low survival in human breast cancer patients.
Suhail, Yasir; Liu, Yamin; Du, Wenqiang; Afzal, Junaid; Qiu, Xihua; Atiq, Amina; Vera-Licona, Paola; Agmon, Eran.
Afiliação
  • Suhail Y; Department of Biomedical Engineering, University of Connecticut Health, Farmington, Connecticut, USA.
  • Liu Y; Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, Connecticut, USA.
  • Du W; Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA.
  • Afzal J; Department of Biomedical Engineering, University of Connecticut Health, Farmington, Connecticut, USA.
  • Qiu X; Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA.
  • Atiq A; Department of Biomedical Engineering, University of Connecticut Health, Farmington, Connecticut, USA.
  • Vera-Licona P; Department of Medicine, University of California San Francisco, San Francisco, California, USA.
  • Agmon E; Department of Biomedical Engineering, University of Connecticut Health, Farmington, Connecticut, USA.
  • Kshitiz; Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA.
Mol Carcinog ; 2024 Aug 16.
Article em En | MEDLINE | ID: mdl-39150154
ABSTRACT
Hypoxia is one of the key factors in the tumor microenvironment regulating nearly all steps in the metastatic cascade in many cancers, including in breast cancer. The hypoxic regions can however be dynamic with the availability of oxygen fluctuating or oscillating. The canonical response to hypoxia is relayed by transcription factor Hypoxia-Inducible Factor 1 (HIF-1), which is stabilized in hypoxia and acts as the master regulator of a large number of downstream genes. However, HIF-1 transcriptional activity can also fluctuate either due to unstable hypoxia, or by lactate mediated noncanonical degradation of HIF-1. Our understanding of how oscillatory hypoxia or HIF-1 activity specifically influences cancer malignancy is very limited. Here, using MDA-MB-231 cells as a model of triple negative breast cancer characterized by severe hypoxia, we measured the gene expression changes induced specifically by oscillatory hypoxia. We found that oscillatory hypoxia can specifically regulate gene expression differently, and at times opposite to stable hypoxia. Using the Cancer Genome Atlas RNAseq data of human cancer samples, we show that the oscillatory specific gene expression signature in MDA-MB-231 is enriched in most human cancers, and prognosticates low survival in breast cancer patients. In particular, we found that oscillatory hypoxia, unlike stable hypoxia, induces unfolded protein folding response in cells resulting in gene expression predicting reduced survival.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Mol Carcinog Assunto da revista: BIOLOGIA MOLECULAR / NEOPLASIAS Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Mol Carcinog Assunto da revista: BIOLOGIA MOLECULAR / NEOPLASIAS Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos