Your browser doesn't support javascript.
loading
Caffeic acid ameliorates metabolic dysfunction-associated steatotic liver disease via alleviating oxidative damage and lipid accumulation in hepatocytes through activating Nrf2 via targeting Keap1.
Zhang, Jinyu; Ouyang, Hao; Gu, Xinnan; Dong, Shiyuan; Lu, Bin; Huang, Zhenlin; Li, Jian; Ji, Lili.
Afiliação
  • Zhang J; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine,
  • Ouyang H; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine,
  • Gu X; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine,
  • Dong S; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine,
  • Lu B; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine,
  • Huang Z; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine,
  • Li J; Department of Pharmaceutics, China Pharmaceutical University, Jiangsu Nanjing, 210009, China; Technology Center of Jinling Pharmaceutical Co., Ltd., Jiangsu Nanjing, 210009, China. Electronic address: lijian@njjlzy.com.
  • Ji L; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine,
Free Radic Biol Med ; 224: 352-365, 2024 Aug 28.
Article em En | MEDLINE | ID: mdl-39209138
ABSTRACT
Metabolic-associated steatotic liver disease (MASLD), known as non-alcoholic fatty liver disease (NAFLD) in the past, encompasses a range of liver pathological conditions marked by the excessive lipid accumulation. Consumption of coffee is closely associated with the reduced risk of MASLD. Caffeic acid (CA), a key active ingredient in coffee, exhibits notable hepatoprotective properties. This study aims to investigate the improvement of CA on MASLD and the engaged mechanism. Mice underwent a 12-week high-fat diet (HFD) regimen to induce MASLD, and liver pathology was assessed using hematoxylin-eosin (H&E) and oil red O (ORO) staining. Hepatic inflammation was evaluated by F4/80 and Ly6G immunohistochemistry (IHC) and myeloperoxidase (MPO) measurement. Pathways and transcription factors relevant to MASLD were analyzed by using microarray data from patients' livers. Oxidative damage was evaluated by detecting reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD). Co-immunoprecipitation (CoIP), cellular thermal shift assay (CETSA) and surface plasmon resonance (SPR) were used to validate the binding between CA and its target protein. CA significantly alleviated liver damage, steatosis and inflammatory injury, and reduced the elevated NAFLD activity score (NAS) in HFD-fed mice. Clinical data indicate that fatty acid metabolism and ROS generation are pivotal in MASLD progression. CA increased the expression of fibroblast growth factor 21 (FGF21), FGF receptor 1 (FGFR1) and ß-Klotho (KLB), and promoted fatty acid consumption. Additionally, CA mitigated oxidative stress injury and activated nuclear factor erythroid 2-related factor-2 (Nrf2). In primary hepatocytes isolated from Nrf2 knockout mice, CA's promotion on FGF21 release and inhibition on oxidative stress and lipotoxicity was disappeared. CA could directly bind to kelch-like ECH-associated protein 1 (Keap1) that is an Nrf2 inhibitor protein. This study suggests that CA alleviates MASLD by reducing hepatic lipid accumulation, lipotoxicity and oxidative damage through activating Nrf2 via binding to Keap1.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Free Radic Biol Med Assunto da revista: BIOQUIMICA / MEDICINA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Free Radic Biol Med Assunto da revista: BIOQUIMICA / MEDICINA Ano de publicação: 2024 Tipo de documento: Article