The rapid-reaction kinetics of an electron-bifurcating flavoprotein, the crotonyl-CoA-dependent NADH:ferredoxin oxidoreductase EtfAB:bcd.
J Biol Chem
; 300(10): 107745, 2024 Oct.
Article
em En
| MEDLINE
| ID: mdl-39236874
ABSTRACT
We have investigated the kinetic behavior of the electron-bifurcating crotonyl-CoA-dependent NADH ferredoxin oxidoreductase EtfABbcd from Megasphaera elsdenii. The overall behavior of the complex in both the reductive and the oxidative half-reactions is consistent with that previously determined for the individual EtfAB and bcd components. This includes an uncrossing of the half-potentials of the bifurcating flavin of the EtfAB component in the course of ferredoxin-reducing catalysis, ionization of the bcd flavin semiquinone and the appearance of a charge transfer complex upon binding of the high potential acceptor crotonyl-CoA. The observed rapid-reaction rates of ferredoxin reduction are independent of [NADH], [crotonyl-CoA], and [ferredoxin], with an observed rate of â¼0.2 s-1, consistent with the observed steady-state kinetics. In enzyme-monitored turnover experiments, an approach to steady-state where the complex's flavins become reduced but no ferredoxin is generated is followed by a steady-state phase characterized by extensive ferredoxin reduction but little change in overall levels of flavin reduction. The approach to the steady-state phase can be eliminated by prior reduction of the complex, in which case there is no lag in the onset of ferredoxin reduction; this is consistent with the et FAD needing to be reduced to the level of the (anionic) semiquinone for bifurcation and concomitant ferredoxin reduction to occur. Single-turnover experiments support this conclusion, with the accumulation of the anionic semiquinone of the et FAD apparently required to prime the system for subsequent bifurcation and ferredoxin reduction.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Oxirredução
/
Acil Coenzima A
Idioma:
En
Revista:
J Biol Chem
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Estados Unidos