Construction of Yolk@shell Nanocomposite Particles with Controlled Multisized Pore Structures by Monomicelle Confined Assembly.
ACS Nano
; 18(40): 27511-27523, 2024 Oct 08.
Article
em En
| MEDLINE
| ID: mdl-39320116
ABSTRACT
Hollow nanoparticles with tunable structures and spatial and chemical specificity are considered as promising carriers. However, it remains a formidable challenge to endow hollow nanomaterials with precisely controlled multisized macro/mesoporous structures up to now. This paper demonstrates a "polydopamine (PDA) expansion-shrinkage" strategy combined with a monomicelle interfacial confined assembly method to achieve the highly controllable preparation of a series of yolk@shell PDA@SiO2 composite nanoparticles with structural asymmetry and a tunable multisized pore in the shell. The strategy allows systematic manipulation of the average pore size of large slit pores in the range of 15.4-86.5 nm by adjusting the reaction temperature. Benefiting from advantages such as an asymmetric structure and multilevel porosity, they exhibit excellent performance in the applications of on-demand loading of dual-sized cargoes, dual-propelled nanomotors, and particle size-selected encapsulation and separation. These findings provide inspiration for the construction of asymmetric yolk@shell structures with tunable multisized pores for a wide range of biological and chemical applications.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
ACS Nano
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
China