Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
STAR Protoc ; 4(3): 102355, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37310863

RESUMEN

Here, we present a protocol for the generation of functional midbrain dopaminergic (mDA) neurons from human embryonic stem cells (hESCs), which mimics the development of the human ventral midbrain. We describe steps for hESC proliferation, induction of mDA progenitors, freezing stocks of mDA progenitors as an intermediate starting point to reduce the time to make mDA neurons, and maturation of mDA neurons. The entire protocol is feeder-free and uses chemically defined materials. For complete details on the use and execution of this protocol, please refer to Nishimura et al. (2023).1.


Asunto(s)
Neuronas Dopaminérgicas , Células Madre Embrionarias Humanas , Humanos , Células Madre Embrionarias , Diferenciación Celular , Mesencéfalo
2.
Stem Cell Reports ; 18(1): 337-353, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36400027

RESUMEN

Stem cell technologies provide new opportunities for modeling cells in health and disease and for regenerative medicine. In both cases, developmental knowledge and defining the molecular properties and quality of the cell types is essential. In this study, we identify developmental factors important for the differentiation of human embryonic stem cells (hESCs) into functional midbrain dopaminergic (mDA) neurons. We found that laminin-511, and dual canonical and non-canonical WNT activation followed by GSK3ß inhibition plus FGF8b, improved midbrain patterning. In addition, neurogenesis and differentiation were enhanced by activation of liver X receptors and inhibition of fibroblast growth factor signaling. Moreover, single-cell RNA-sequencing analysis revealed a developmental dynamics similar to that of the endogenous human ventral midbrain and the emergence of high-quality molecularly defined midbrain cell types, including mDA neurons. Our study identifies novel factors important for human midbrain development and opens the door for a future application of molecularly defined hESC-derived cell types in Parkinson disease.


Asunto(s)
Células Madre Embrionarias Humanas , Humanos , Transcriptoma , Neuronas Dopaminérgicas/metabolismo , Diferenciación Celular/genética , Mesencéfalo
3.
Front Cell Dev Biol ; 8: 463, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733875

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder that predominantly affects dopaminergic (DA) neurons of the substantia nigra. Current treatment options for PD are symptomatic and typically involve the replacement of DA neurotransmission by DA drugs, which relieve the patients of some of their motor symptoms. However, by the time of diagnosis, patients have already lost about 70% of their substantia nigra DA neurons and these drugs offer only temporary relief. Therefore, cell replacement therapy has garnered much interest as a potential treatment option for PD. Early studies using human fetal tissue for transplantation in PD patients provided proof of principle for cell replacement therapy, but they also highlighted the ethical and practical difficulties associated with using human fetal tissue as a cell source. In recent years, advancements in stem cell research have made human pluripotent stem cells (hPSCs) an attractive source of material for cell replacement therapy. Studies on how DA neurons are specified and differentiated in the developing mouse midbrain have allowed us to recapitulate many of the positional and temporal cues needed to generate DA neurons in vitro. However, little is known about the developmental programs that govern human DA neuron development. With the advent of single-cell RNA sequencing (scRNA-seq) and bioinformatics, it has become possible to analyze precious human samples with unprecedented detail and extract valuable high-quality information from large data sets. This technology has allowed the systematic classification of cell types present in the human developing midbrain along with their gene expression patterns. By studying human development in such an unbiased manner, we can begin to elucidate human DA neuron development and determine how much it differs from our knowledge of the rodent brain. Importantly, this molecular description of the function of human cells has become and will increasingly be a reference to define, evaluate, and engineer cell types for PD cell replacement therapy and disease modeling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA