Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Chem Biol ; 12(5): 361-6, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27018887

RESUMEN

Broad-spectrum antiviral drugs targeting host processes could potentially treat a wide range of viruses while reducing the likelihood of emergent resistance. Despite great promise as therapeutics, such drugs remain largely elusive. Here we used parallel genome-wide high-coverage short hairpin RNA (shRNA) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 screens to identify the cellular target and mechanism of action of GSK983, a potent broad-spectrum antiviral with unexplained cytotoxicity. We found that GSK983 blocked cell proliferation and dengue virus replication by inhibiting the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH). Guided by mechanistic insights from both genomic screens, we found that exogenous deoxycytidine markedly reduced GSK983 cytotoxicity but not antiviral activity, providing an attractive new approach to improve the therapeutic window of DHODH inhibitors against RNA viruses. Our results highlight the distinct advantages and limitations of each screening method for identifying drug targets, and demonstrate the utility of parallel knockdown and knockout screens for comprehensive probing of drug activity.


Asunto(s)
Antivirales/farmacología , Sistemas CRISPR-Cas/genética , Carbazoles/farmacología , Lentivirus/efectos de los fármacos , ARN Interferente Pequeño/genética , Carbazoles/química , Línea Celular Tumoral , Clonación Molecular , Humanos , Lentivirus/fisiología
2.
Appl Environ Microbiol ; 83(3)2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27864176

RESUMEN

Lantibiotics are ribosomally synthesized and posttranslationally modified antimicrobial peptides that are characterized by the thioether cross-linked bisamino acids lanthionine (Lan) and methyllanthionine (MeLan). Duramycin contains 19 amino acids, including one Lan and two MeLans, an unusual lysinoalanine (Lal) bridge formed from the ε-amino group of lysine 19 and a serine residue at position 6, and an erythro-3-hydroxy-l-aspartic acid at position 15. These modifications are important for the interactions of duramycin with its biological target, phosphatidylethanolamine (PE). Based on the binding affinity and specificity for PE, duramycin has been investigated as a potential therapeutic, as a molecular probe to investigate the role and localization of PE in biological systems, and to block viral entry into mammalian cells. In this study, we identified the duramycin biosynthetic gene cluster by genome sequencing of Streptomyces cinnamoneus ATCC 12686 and investigated the dur biosynthetic machinery by heterologous expression in Escherichia coli In addition, the analog duramycin C, containing six amino acid changes compared to duramycin, was successfully generated in E. coli The substrate recognition motif of DurX, an α-ketoglutarate/iron(II)-dependent hydroxylase that carries out the hydroxylation of aspartate 15 of the precursor peptide DurA, was also investigated using mutagenesis of the DurA peptide. Both in vivo and in vitro results demonstrated that Gly16 is important for DurX activity. IMPORTANCE: Duramycin is a natural product produced by certain bacteria that binds to phosphatidylethanolamine (PE). Because PE is involved in many cellular processes, duramycin is an antibiotic that kills bacteria, but it has also been used as a molecular probe to detect PE and monitor its localization in mammalian cells and even whole organisms, and it was recently shown to display broad-spectrum inhibition of viral entry into host cells. In addition, the molecule has been evaluated as treatment for cystic fibrosis. We report here the genes that are involved in duramycin biosynthesis, and we produced duramycin by expressing those genes in Escherichia coli We show that duramycin analogs can also be produced. The ability to access duramycin and analogs by production in E. coli opens opportunities to improve duramycin as an antibiotic, PE probe, antiviral, or cystic fibrosis therapeutic.


Asunto(s)
Bacteriocinas/genética , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Péptidos/genética , Streptomyces/genética , Proteínas Bacterianas/metabolismo , Bacteriocinas/biosíntesis , Escherichia coli/metabolismo , Organismos Modificados Genéticamente/metabolismo , Péptidos/metabolismo , Streptomyces/metabolismo
3.
Biochemistry ; 50(5): 891-8, 2011 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-21229987

RESUMEN

Members of the LanL family of lanthionine synthetases consist of three catalytic domains, an N-terminal pSer/pThr lyase domain, a central Ser/Thr kinase domain, and a C-terminal lanthionine cyclase domain. The N-terminal lyase domain has sequence homology with members of the OspF family of effector proteins. In this study, the residues in the lyase domain of VenL that are conserved in the active site of OspF proteins were mutated to evaluate their importance for catalysis. In addition, residues that are fully conserved in the LanL family but not in the OspF family were mutated. Activity assays with these mutant proteins are consistent with a model in which Lys80 in VenL deprotonates the α-proton of pSer/pThr residues to initiate the elimination reaction. Lys51 is proposed to activate this proton by coordination to the carbonyl of the pSer/pThr, and His53 is believed to protonate the phosphate leaving group. These functions are very similar to the corresponding homologous residues in OspF proteins. On the other hand, recognition of the phosphate group of pSer/pThr appears to be achieved differently in VenL than in the OspF proteins. Arg156 and Lys103 are thought to interact with the phosphate group on the basis of a structural homology model.


Asunto(s)
Proteínas Bacterianas/química , Hidroliasas/química , Complejos Multienzimáticos/química , Familia de Multigenes , Streptomyces/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Hidroliasas/genética , Hidroliasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Estructura Terciaria de Proteína , Alineación de Secuencia , Streptomyces/química
4.
J Am Chem Soc ; 133(34): 13753-60, 2011 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-21770392

RESUMEN

Lantibiotics are ribosomally synthesized and post-translationally modified antimicrobial peptides that are characterized by the thioether cross-linked amino acids lanthionine (Lan) and methyllanthionine (MeLan). Cinnamycin is a 19 amino acid lantibiotic that contains one Lan and two MeLan. Cinnamycin also contains an unusual lysinoalanine (Lal) bridge formed from the ε-amino group of lysine 19 and a serine residue at position 6, and an erythro-3-hydroxy-L-aspartic acid resulting from the hydroxylation of L-aspartate at position 15. These modifications are critical in mediating the interactions of cinnamycin with its target, phosphatidylethanolamine. Recently, the cinnamycin biosynthetic gene cluster (cin) from Streptomyces cinnamoneus cinnamoneus DSM 40005 was reported. Herein, we investigated the biosynthetic machinery using both in vitro studies and heterologous expression in Escherichia coli. CinX is an α-ketoglutarate/iron(II)-dependent hydroxylase that carries out the hydroxylation of aspartate 15 of the precursor peptide CinA. In addition, CinM catalyzes dehydration of four Ser and Thr residues and subsequent cyclization of Cys residues to form the three (Me)Lan bridges. The order of the post-translational modifications catalyzed by CinM and CinX is interchangeable in vitro. CinX did not require the leader sequence at the N-terminus of CinA for activity, but the leader peptide was necessary for CinM function. Although CinM dehydrated serine 6, it did not catalyze the formation of Lal. A small protein encoded by cinorf7 is critical for the formation of the cross-link between Lys19 and dehydroalanine 6 as shown by coexpression studies of CinA, CinM, CinX, and Cinorf7 in E. coli.


Asunto(s)
Bacteriocinas/metabolismo , Péptidos Cíclicos/metabolismo , Streptomyces/enzimología , Streptomyces/metabolismo , Secuencia de Aminoácidos , Expresión Génica , Lisinoalanina/metabolismo , Datos de Secuencia Molecular , Procesamiento Proteico-Postraduccional , Streptomyces/genética
5.
Anal Biochem ; 386(1): 1-8, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-18834849

RESUMEN

Although protein prenylation is widely studied, there are few good methods for isolating prenylated proteins from their nonprenylated relatives. We report that crosslinked agarose (e.g., Sepharose) chromatography medium that has been chemically functionalized with beta-cyclodextrin (beta-CD) is extremely effective in affinity chromatography of prenylated proteins. In this study, a variety of proteins with C-terminal prenylation target ("CAAX box") sequences were enzymatically prenylated in vitro with natural and nonnatural prenyl diphosphate substrates. The prenylated protein products could then be isolated from starting materials by gravity chromatography or fast protein liquid chromatography (FPLC) on a beta-CD-Sepharose column. One particular prenylation reaction, farnesylation of an mCherry-CAAX fusion construct, was studied in detail. In this case, purified farnesylated product was unambiguously identified by electrospray mass spectrometry. In addition, when mCherry-CAAX was prenylated with a nonnatural, functional isoprenoid substrate, the functional group was maintained by chromatography on beta-CD-Sepharose, such that the resulting protein could be selectively bound at its C terminus to complementary functionality on a solid substrate. Finally, beta-CD-Sepharose FPLC was used to isolate prenylated mCherry-CAAX from crude HeLa cell lysate as a model for purifying prenylated proteins from cell extracts. We propose that this method could be generally useful to the community of researchers studying protein prenylation.


Asunto(s)
Cromatografía de Afinidad/métodos , Prenilación de Proteína , Proteínas/aislamiento & purificación , Ciclodextrinas , Células HeLa , Humanos , Métodos , Proyectos de Investigación , Sefarosa
6.
Curr Opin Biotechnol ; 48: 127-134, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28458037

RESUMEN

The development of broad-spectrum, host-acting antiviral therapies remains an important but elusive goal in anti-infective drug discovery. To replicate efficiently, viruses not only depend on their hosts for an adequate supply of pyrimidine nucleotides, but also up-regulate pyrimidine nucleotide biosynthesis in infected cells. In this review, we outline our understanding of mammalian de novo and salvage metabolic pathways for pyrimidine nucleotide biosynthesis. The available spectrum of experimental and FDA-approved drugs that modulate individual steps in these metabolic pathways is also summarized. The logic of a host-acting combination antiviral therapy comprised of inhibitors of dihydroorotate dehydrogenase and uridine/cytidine kinase is discussed.


Asunto(s)
Antivirales/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Nucleótidos de Pirimidina/biosíntesis , Virus/efectos de los fármacos , Dihidroorotato Deshidrogenasa , Humanos , Virus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA