Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 589(7842): 371-375, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33473225

RESUMEN

Blue jets are lightning-like, atmospheric electric discharges of several hundred millisecond duration that fan into cones as they propagate from the top of thunderclouds into the stratosphere1. They are thought to initiate in an electric breakdown between the positively charged upper region of a cloud and a layer of negative charge at the cloud boundary and in the air above. The breakdown forms a leader that transitions into streamers2 when propagating upwards3. However, the properties of the leader, and the altitude to which it extends above the clouds, are not well characterized4. Blue millisecond flashes in cloud tops5,6 have previously been associated with narrow bipolar events7,8, which are 10- to 30-microsecond pulses in wideband electric field records, accompanied by bursts of intense radiation at 3 to 300 megahertz from discharges with short (inferred) channel lengths (less than one kilometre)9-11. Here we report spectral measurements from the International Space Station, which offers an unimpeded view of thunderclouds, with 10-microsecond temporal resolution. We observe five intense, approximately 10-microsecond blue flashes from a thunderstorm cell. One flash initiates a pulsating blue jet to the stratopause (the interface between the stratosphere and the ionosphere). The observed flashes were accompanied by 'elves'12 in the ionosphere. Emissions from lightning leaders in the red spectral band are faint and localized, suggesting that the flashes and the jet are streamer ionization waves, and that the leader elements at their origin are short and localized. We propose that the microsecond flashes are the optical equivalent of negative narrow bipolar events observed in radio waves. These are known to initiate lightning within the cloud and to the ground, and blue lightning into the stratosphere, as reported here.

2.
Geophys Res Lett ; 49(6): e2021GL095879, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35864928

RESUMEN

We report on observations of corona discharges at the uppermost region of clouds characterized by emissions in a blue band of nitrogen molecules at 337 nm, with little activity in the red band of lightning leaders at 777.4 nm. Past work suggests that they are generated in cloud tops reaching the tropopause and above. Here we explore their occurrence in two convective environments of the same storm: one is developing with clouds reaching above the tropopause, and one is collapsing with lower cloud tops. We focus on those discharges that form a distinct category with rise times below 20 µs, implying that they are at the very top of the clouds. The discharges are observed in both environments. The observations suggest that a range of storm environments may generate corona discharges and that they may be common in convective surges.

3.
Geophys Res Lett ; 49(13): e2022GL098938, 2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-36245952

RESUMEN

How lightning initiates inside thunderclouds remains a major puzzle of atmospheric electricity. By monitoring optical emissions from thunderstorms, the Atmosphere-Space Interactions Monitor (ASIM) onboard the International Space Station is providing new clues about lightning initiation by detecting Blue LUminous Events (BLUEs), which are manifestations of electrical corona discharges that sometimes precedes lightning. Here we combine optical and radio observations from a thunderstorm near Malaysia to uncover a new type of event containing multiple optical and radio pulses. We find that the first optical pulse coincides with a strong radio signal in the form of a Narrow Bipolar Event (NBE) but subsequent optical pulses, delayed some milliseconds, have weaker radio signals, possibly because they emanate from a horizontally oriented electrical discharges which does not trigger full-fledged lightning. Our results cast light on the differences between isolated and lightning-initiating electrical discharges.

5.
Geophys Res Lett ; 48(4): 2020GL090700, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-34511659

RESUMEN

The Atmosphere-Space Interactions Monitor measures Terrestrial Gamma-Ray Flashes (TGFs) simultaneously with optical emissions from associated lightning activity. We analyzed optical measurements at 180-230, 337, and 777.4 nm related to 69 TGFs observed between June 2018 and October 2019. All TGFs are associated with optical emissions and 90% of them are at the onset of a large optical pulse, suggesting that they are connected with the initiation of current surges. A model of photon delay induced by cloud scattering suggests that the sources of the optical pulses are from 0.7 ms before to 4.4 ms after the TGFs, with a median of -10 ± 80 µs, and 1-5 km below the cloud top. The pulses have rise times comparable to lightning but longer durations. Pulse amplitudes at 337 nm are ∼3 times larger than at 777.4 nm. The results support the leader-streamer mechanism for TGF generation.

6.
Bull Atmos Sci Technol ; 5(1): 2, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38586869

RESUMEN

Terrestrial gamma-ray flashes (TGFs) are bursts of energetic X- and gamma-rays emitted from thunderstorms. The Atmosphere-Space Interactions Monitor (ASIM) mounted onto the International Space Station (ISS) is dedicated to measure TGFs and optical signatures of lightning; ISS LIS (Lightning Imaging Sensor) detects lightning flashes allowing for simultaneous measurements with ASIM. Whilst ASIM measures ∼300-400 TGFs per year, ISS LIS detects ∼106 annual lightning flashes giving a disproportion of four orders of magnitude. Based on the temporal evolution of lightning flashes and the spatial pattern of the constituing events, we present an algorithm to reduce the number of space-detected flashes potentially associated with TGFs by ∼ 60% and of associated LIS groups by ∼ 95%. We use ASIM measurements to confirm that the resulting flashes are indeed those associated with TGFs detected at approx. 400 km altitude and thus benchmark our algorithm preserving 70-80% of TGFs from concurrent ASIM-LIS measurements. We compare how the radiance, footprint size and the global distribution of lightning flashes of the reduced set relates to the average of all measured lightning flashes and do not observe any significant difference. Finally, we present a parameter study of our algorithm and discuss which parameters can be tweaked to maximize the reduction efficiency whilst keeping flashes associated to TGFs. In the future, this algorithm will hence be capable of facilitating the search for TGFs in a reduced set of lightning flashes measured from space.

7.
Sci Rep ; 14(1): 6946, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521847

RESUMEN

The Atmosphere-Space Interactions Monitor (ASIM) on the International Space Station (ISS) includes an instrument designed to geolocate Terrestrial Gamma-ray Flashes (TGF) produced by thunderstorms. It does so with a coded aperture system shadowing the pixelated Low Energy Detector of the Modular X- and Gamma-ray Sensor (MXGS). Additionally, it locates associated lightning flashes with the Modular Multispectral Imaging Array (MMIA). Here we present 3 bright TGFs with very similar duration, fluency and observation distance. The innovative imaging capabilities allow us to determine the TGF position and correlate the TGF-lightning parent event in time and position simultaneously. The accurate position determination and distance to the observer allow us to perform a comparative study of TGF characteristics. These TGFs were produced in association with lightning flashes below the highest cloud tops of developing to mature convective cells. In one event, GLM (Geostationary Lightning Mapper) cloud flash rates were slowing down after the TGF while negative cloud-to-ground flashes suddenly ceased from 10 to 5 min before the TGF. An 8-stroke (strongest: -93 kA) cloud-to-ground flash occurred 31 s before the TGF. Vertical profiles from the ERA5 reanalysis data suggest TGFs may be produced in variety of tropical environments.

8.
Nat Commun ; 12(1): 6631, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789752

RESUMEN

Narrow bipolar events (NBEs) are signatures in radio signals from thunderstorms observed by ground-based receivers. NBEs may occur at the onset of lightning, but the discharge process is not well understood. Here, we present spectral measurements by the Atmosphere-Space Interactions Monitor (ASIM) on the International Space Station that are associated with nine negative and three positive NBEs observed by a ground-based array of receivers. We found that both polarities NBEs are associated with emissions at 337 nm with weak or no detectable emissions at 777.4 nm, suggesting that NBEs are associated with streamer breakdown. The rise times of the emissions for negative NBEs are about 10 µs, consistent with source locations at cloud tops where photons undergo little scattering by cloud particles, and for positive NBEs are ~1 ms, consistent with locations deeper in the clouds. For negative NBEs, the emission strength is almost linearly correlated with the peak current of the associated NBEs. Our findings suggest that ground-based observations of radio signals provide a new means to measure the occurrences and strength of cloud-top discharges near the tropopause.

9.
Sci Rep ; 10(1): 16406, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009461

RESUMEN

The solar wind influence on geospace can be described as the sum of a directly driven component, or dayside reconnection, and an unloading component, associated with the release of magnetic energy via nightside reconnection. The two processes are poorly correlated on short time scales, but exactly equal when averaged over long time windows. Because of this peculiar property, regression models of ionospheric electrodynamics that are based on solar wind data are time scale specific: Models derived from 1 min resolution data will be different from models derived from hourly, daily, or monthly data. We explain and quantify this effect on simple linear regression models of various geomagnetic indices. We also derive a time scale-dependent correction factor that can be used with the Average Magnetic field and Polar current System model. Finally, we show how absolute estimates of the nightside reconnection rate can be calculated from solar wind measurements and geomagnetic indices.

10.
Science ; 367(6474): 183-186, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31826957

RESUMEN

Terrestrial gamma-ray flashes (TGFs) are transient gamma-ray emissions from thunderstorms, generated by electrons accelerated to relativistic energies in electric fields. Elves are ultraviolet and optical emissions excited in the lower ionosphere by electromagnetic waves radiated from lightning current pulses. We observed a TGF and an associated elve using the Atmosphere-Space Interactions Monitor on the International Space Station. The TGF occurred at the onset of a lightning current pulse that generated an elve, in the early stage of a lightning flash. Our measurements suggest that the current onset is fast and has a high amplitude-a prerequisite for elves-and that the TGF is generated in the electric fields associated with the lightning leader.

11.
J Geophys Res Atmos ; 123(1): 139-159, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29527426

RESUMEN

We compared the modeled energy spectral density of very low frequency (VLF) radio emissions from terrestrial gamma ray flashes (TGFs) with the energy spectral density of VLF radio sferics recorded by Duke VLF receiver simultaneously with those TGFs. In total, six events with world wide lightning location network (WWLLN) defined locations were analyzed to exhibit a good fit between the modeled and observed energy spectral densities. In VLF range the energy spectral density of the TGF source current moment is found to be dominated by the contribution of secondary low-energy electrons and independent of the relativistic electrons which play their role in low-frequency (LF) range. Additional spectral modulation by the multiplicity of TGF peaks was found and demonstrated a good fit for two TGFs whose VLF sferics consist of two overlapping pulses each. The number of seeding pulses in TGF defines the spectral shape in VLF range, which allows to retrieve this number from VLF sferics, assuming they were radiated by TGFs. For two events it was found that the number of seeding pulses is small, of the order of 10. For the rest of the events the lower boundary of the number of seeding pulses was found to be between 10 to 103.

12.
J Geophys Res Atmos ; 122(15): 8120-8134, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28989832

RESUMEN

Several computer models exist to explain the observation of terrestrial gamma-ray flashes (TGFs). Some of these models estimate the electric field ahead of lightning leaders and its effects on electron acceleration and multiplication. In this paper, we derive a new set of constraints to do more realistic modeling. We determine initial conditions based on in situ measurements of electric field and vertical separation between the main charge layers of thunderclouds. A maximum electric field strength of 50 kV/cm at sea level is introduced as the upper constraint for the leader electric field. The threshold for electron avalanches to develop of 2.86 kV/cm at sea level is introduced as the lower value. With these constraints, we determine a region where acceleration and multiplication of electrons occur. The maximum potential difference in this region is found to be ∼52 MV, and the corresponding number of avalanche multiplication lengths is ∼3.5. We then quantify the effect of the ambient electric field compared to the leader field at the upper altitude of the negative tip. Finally, we argue that only leaders with the highest potential difference between its tips (∼600 MV) can be candidates for the production of TGFs. However, with the assumptions we have used, these cannot explain the observed maximum energies of at least 40 MeV. Open questions with regard to the temporal development of the streamer zone and its effect on the shape of the electric field remain.

13.
J Geophys Res Atmos ; 121(13): 8006-8022, 2016 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-27774368

RESUMEN

A detailed analysis of Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) terrestrial gamma ray flashes (TGFs) is performed in association with World Wide Lightning Location Network (WWLLN) sources and very low frequency (VLF) sferics recorded at Duke University. RHESSI clock offset is evaluated and found to experience changes on the 5 August 2005 and 21 October 2013, based on the analysis of TGF-WWLLN matches. The clock offsets were found for all three periods of observations with standard deviations less than 100 µs. This result opens the possibility for the precise comparative analyses of RHESSI TGFs with the other types of data (WWLLN, radio measurements, etc.) In case of multiple-peak TGFs, WWLLN detections are observed to be simultaneous with the last TGF peak for all 16 cases of multipeak RHESSI TGFs simultaneous with WWLLN sources. VLF magnetic field sferics were recorded for two of these 16 events at Duke University. These radio measurements also attribute VLF sferics to the second peak of the double TGFs, exhibiting no detectable radio emission during the first TGF peak. Possible scenarios explaining these observations are proposed. Double (multipeak) TGFs could help to distinguish between the VLF radio emission radiated by the recoil currents in the +IC leader channel and the VLF emission from the TGF producing electrons.

14.
J Geophys Res Space Phys ; 119(11): 9174-9191, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26167437

RESUMEN

This paper presents the first study that uses the GEometry ANd Tracking 4 (GEANT4) toolkit to do quantitative comparisons with other modeling results related to the production of terrestrial gamma ray flashes and high-energy particle emission from thunderstorms. We will study the relativistic runaway electron avalanche (RREA) and the relativistic feedback process, as well as the production of bremsstrahlung photons from runaway electrons. The Monte Carlo simulations take into account the effects of electron ionization, electron by electron (Møller), and electron by positron (Bhabha) scattering as well as the bremsstrahlung process and pair production, in the 250 eV to 100 GeV energy range. Our results indicate that the multiplication of electrons during the development of RREAs and under the influence of feedback are consistent with previous estimates. This is important to validate GEANT4 as a tool to model RREAs and feedback in homogeneous electric fields. We also determine the ratio of bremsstrahlung photons to energetic electrons Nγ /Ne . We then show that the ratio has a dependence on the electric field, which can be expressed by the avalanche time τ(E) and the bremsstrahlung coefficient α(ε). In addition, we present comparisons of GEANT4 simulations performed with a "standard" and a "low-energy" physics list both validated in the 1 keV to 100 GeV energy range. This comparison shows that the choice of physics list used in GEANT4 simulations has a significant effect on the results. KEY POINTS: Testing the feedback mechanism with GEANT4Validating the GEANT4 programming toolkitStudy the ratio of bremsstrahlung photons to electrons at TGF source altitude.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA