Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Am J Respir Crit Care Med ; 200(4): 454-461, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30758975

RESUMEN

Rationale: Cor pulmonale (right ventricular [RV] dilation) and cor pulmonale parvus (RV shrinkage) are both described in chronic obstructive pulmonary disease (COPD). The identification of emphysema as a shared risk factor suggests that additional disease characterization is needed to understand these widely divergent cardiac processes.Objectives: To explore the relationship between computed tomography measures of emphysema and distal pulmonary arterial morphology with RV volume, and their association with exercise capacity and mortality in ever-smokers with COPD enrolled in the COPDGene Study.Methods: Epicardial (myocardium and chamber) RV volume (RVEV), distal pulmonary arterial blood vessel volume (arterial BV5: vessels <5 mm2 in cross-section), and objective measures of emphysema were extracted from 3,506 COPDGene computed tomography scans. Multivariable linear and Cox regression models and the log-rank test were used to explore the association between emphysema, arterial BV5, and RVEV with exercise capacity (6-min-walk distance) and all-cause mortality.Measurements and Main Results: The RVEV was approximately 10% smaller in Global Initiative for Chronic Obstructive Lung Disease stage 4 versus stage 1 COPD (P < 0.0001). In multivariable modeling, a 10-ml decrease in arterial BV5 (pruning) was associated with a 1-ml increase in RVEV. For a given amount of emphysema, relative preservation of the arterial BV5 was associated with a smaller RVEV. An increased RVEV was associated with reduced 6-minute-walk distance and in those with arterial pruning an increased mortality.Conclusions: Pulmonary arterial pruning is associated with clinically significant increases in RV volume in smokers with COPD and is related to exercise capacity and mortality in COPD.Clinical trial registered with www.clinicaltrials.gov (NCT00608764).


Asunto(s)
Arteria Pulmonar/diagnóstico por imagen , Enfisema Pulmonar/diagnóstico por imagen , Enfermedad Cardiopulmonar/diagnóstico por imagen , Remodelación Vascular , Anciano , Tolerancia al Ejercicio , Femenino , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/patología , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Mortalidad , Análisis Multivariante , Tamaño de los Órganos , Modelos de Riesgos Proporcionales , Arteria Pulmonar/patología , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfisema Pulmonar/complicaciones , Enfisema Pulmonar/fisiopatología , Enfermedad Cardiopulmonar/etiología , Enfermedad Cardiopulmonar/fisiopatología , Índice de Severidad de la Enfermedad , Tomografía Computarizada por Rayos X , Prueba de Paso
2.
JAMA ; 322(6): 546-556, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31408135

RESUMEN

Importance: While air pollutants at historical levels have been associated with cardiovascular and respiratory diseases, it is not known whether exposure to contemporary air pollutant concentrations is associated with progression of emphysema. Objective: To assess the longitudinal association of ambient ozone (O3), fine particulate matter (PM2.5), oxides of nitrogen (NOx), and black carbon exposure with change in percent emphysema assessed via computed tomographic (CT) imaging and lung function. Design, Setting, and Participants: This cohort study included participants from the Multi-Ethnic Study of Atherosclerosis (MESA) Air and Lung Studies conducted in 6 metropolitan regions of the United States, which included 6814 adults aged 45 to 84 years recruited between July 2000 and August 2002, and an additional 257 participants recruited from February 2005 to May 2007, with follow-up through November 2018. Exposures: Residence-specific air pollutant concentrations (O3, PM2.5, NOx, and black carbon) were estimated by validated spatiotemporal models incorporating cohort-specific monitoring, determined from 1999 through the end of follow-up. Main Outcomes and Measures: Percent emphysema, defined as the percent of lung pixels less than -950 Hounsfield units, was assessed up to 5 times per participant via cardiac CT scan (2000-2007) and equivalent regions on lung CT scans (2010-2018). Spirometry was performed up to 3 times per participant (2004-2018). Results: Among 7071 study participants (mean [range] age at recruitment, 60 [45-84] years; 3330 [47.1%] were men), 5780 were assigned outdoor residential air pollution concentrations in the year of their baseline examination and during the follow-up period and had at least 1 follow-up CT scan, and 2772 had at least 1 follow-up spirometric assessment, over a median of 10 years. Median percent emphysema was 3% at baseline and increased a mean of 0.58 percentage points per 10 years. Mean ambient concentrations of PM2.5 and NOx, but not O3, decreased substantially during follow-up. Ambient concentrations of O3, PM2.5, NOx, and black carbon at study baseline were significantly associated with greater increases in percent emphysema per 10 years (O3: 0.13 per 3 parts per billion [95% CI, 0.03-0.24]; PM2.5: 0.11 per 2 µg/m3 [95% CI, 0.03-0.19]; NOx: 0.06 per 10 parts per billion [95% CI, 0.01-0.12]; black carbon: 0.10 per 0.2 µg/m3 [95% CI, 0.01-0.18]). Ambient O3 and NOx concentrations, but not PM2.5 concentrations, during follow-up were also significantly associated with greater increases in percent emphysema. Ambient O3 concentrations, but not other pollutants, at baseline and during follow-up were significantly associated with a greater decline in forced expiratory volume in 1 second per 10 years (baseline: 13.41 mL per 3 parts per billion [95% CI, 0.7-26.1]; follow-up: 18.15 mL per 3 parts per billion [95% CI, 1.59-34.71]). Conclusions and Relevance: In this cohort study conducted between 2000 and 2018 in 6 US metropolitan regions, long-term exposure to ambient air pollutants was significantly associated with increasing emphysema assessed quantitatively using CT imaging and lung function.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/efectos adversos , Pulmón/fisiología , Enfisema Pulmonar , Anciano , Anciano de 80 o más Años , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Carbono/efectos adversos , Carbono/análisis , Estudios de Cohortes , Progresión de la Enfermedad , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Humanos , Pulmón/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Óxidos de Nitrógeno/efectos adversos , Óxidos de Nitrógeno/análisis , Ozono/efectos adversos , Ozono/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Enfisema Pulmonar/epidemiología , Enfisema Pulmonar/fisiopatología , Pruebas de Función Respiratoria , Tomografía Computarizada por Rayos X , Estados Unidos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA