RESUMEN
Despite its known importance in the cardiovascular system, the specific role and impact of the angiotensin type 2 receptor (AT2R) in lung physiology and pathophysiology remain largely elusive. In this study, we highlight the distinct and specialized lung-specific roles of AT2R, primarily localized to an alveolar fibroblast subpopulation, in contrast to the angiotensin type 1 receptor (AT1R), which is almost exclusively expressed in lung pericytes. Evidence from our research demonstrates that the disruption of AT2R (AT2R-/y), is associated with a surge in oxidative stress and impaired lung permeability, which were further intensified by Hyperoxic Acute Lung Injury (HALI). With aging, AT2R-/y mice show an increase in oxidative stress, premature enlargement of airspaces, as well as increased mortality when exposed to hyperoxia as compared to age-matched WT mice. Our investigation into Losartan, an AT1R blocker, suggests that its primary HALI lung-protective effects are channeled through AT2R, as its protective benefits are absent in AT2R-/y mice. Importantly, a non-peptide AT2R agonist, Compound 21 (C21), successfully reverses lung oxidative stress and TGFß activation in wild-type (WT) mice exposed to HALI. These findings suggest a possible paradigm shift in the therapeutic approach for lung injury and age-associated pulmonary dysfunction, from targeting AT1R with angiotensin receptor blockers (ARBs) towards boosting the protective function of AT2R.
Asunto(s)
Lesión Pulmonar Aguda , Receptor de Angiotensina Tipo 2 , Ratones , Animales , Receptor de Angiotensina Tipo 2/genética , Receptor de Angiotensina Tipo 2/agonistas , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Receptor de Angiotensina Tipo 1/genética , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/prevención & controlRESUMEN
Tryptophan catabolism is highly conserved and generates important bioactive metabolites, including kynurenines, and in some animals, NAD+. Aging and inflammation are associated with increased levels of kynurenine pathway (KP) metabolites and depleted NAD+, factors which are implicated as contributors to frailty and morbidity. Contrastingly, KP suppression and NAD+ supplementation are associated with increased life span in some animals. Here, we used DGRP_229 Drosophila to elucidate the effects of KP elevation, KP suppression, and NAD+ supplementation on physical performance and survivorship. Flies were chronically fed kynurenines, KP inhibitors, NAD+ precursors, or a combination of KP inhibitors with NAD+ precursors. Flies with elevated kynurenines had reduced climbing speed, endurance, and life span. Treatment with a combination of KP inhibitors and NAD+ precursors preserved physical function and synergistically increased maximum life span. We conclude that KP flux can regulate health span and life span in Drosophila and that targeting KP and NAD+ metabolism can synergistically increase life span.