Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37448069

RESUMEN

Smart respiratory therapy is enabled by continual assessment of lung functions. This systematic review provides an overview of the suitability of equipment-to-patient acoustic imaging in continual assessment of lung conditions. The literature search was conducted using Scopus, PubMed, ScienceDirect, Web of Science, SciELO Preprints, and Google Scholar. Fifteen studies remained for additional examination after the screening process. Two imaging modalities, lung ultrasound (LUS) and vibration imaging response (VRI), were identified. The most common outcome obtained from eleven studies was positive observations of changes to the geographical lung area, sound energy, or both, while positive observation of lung consolidation was reported in the remaining four studies. Two different modalities of lung assessment were used in eight studies, with one study comparing VRI against chest X-ray, one study comparing VRI with LUS, two studies comparing LUS to chest X-ray, and four studies comparing LUS in contrast to computed tomography. Our findings indicate that the acoustic imaging approach could assess and provide regional information on lung function. No technology has been shown to be better than another for measuring obstructed airways; hence, more research is required on acoustic imaging in detecting obstructed airways regionally in the application of enabling smart therapy.


Asunto(s)
Enfermedades Pulmonares , Pulmón , Humanos , Pulmón/diagnóstico por imagen , Ultrasonografía , Tomografía Computarizada por Rayos X , Acústica
2.
Sensors (Basel) ; 23(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37112452

RESUMEN

This paper presents a trainable hybrid approach involving a shallow autoencoder (AE) and a conventional classifier for epileptic seizure detection. The signal segments of a channel of electroencephalogram (EEG) (EEG epochs) are classified as epileptic and non-epileptic by employing its encoded AE representation as a feature vector. Analysis on a single channel-basis and the low computational complexity of the algorithm allow its use in body sensor networks and wearable devices using one or few EEG channels for wearing comfort. This enables the extended diagnosis and monitoring of epileptic patients at home. The encoded representation of EEG signal segments is obtained based on training the shallow AE to minimize the signal reconstruction error. Extensive experimentation with classifiers has led us to propose two versions of our hybrid method: (a) one yielding the best classification performance compared to the reported methods using the k-nearest neighbor (kNN) classifier and (b) the second with a hardware-friendly architecture and yet with the best classification performance compared to other reported methods in this category using a support-vector machine (SVM) classifier. The algorithm is evaluated on the Children's Hospital Boston, Massachusetts Institute of Technology (CHB-MIT), and University of Bonn EEG datasets. The proposed method achieves 98.85% accuracy, 99.29% sensitivity, and 98.86% specificity on the CHB-MIT dataset using the kNN classifier. The best figures using the SVM classifier for accuracy, sensitivity, and specificity are 99.19%, 96.10%, and 99.19%, respectively. Our experiments establish the superiority of using an AE approach with a shallow architecture to generate a low-dimensionality yet effective EEG signal representation capable of high-performance abnormal seizure activity detection at a single-channel EEG level and with a fine granularity of 1 s EEG epochs.


Asunto(s)
Epilepsia , Procesamiento de Señales Asistido por Computador , Niño , Humanos , Epilepsia/diagnóstico , Convulsiones/diagnóstico , Electroencefalografía/métodos , Máquina de Vectores de Soporte , Algoritmos
3.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37420775

RESUMEN

A wideband low-profile radiating G-shaped strip on a flexible substrate is proposed to operate as biomedical antenna for off-body communication. The antenna is designed to produce circular polarization over the frequency range 5-6 GHz to communicate with WiMAX/WLAN antennas. Furthermore, it is designed to produce linear polarization over the frequency range 6-19 GHz for communication with the on-body biosensor antennas. It is shown that an inverted G-shaped strip produces circular polarization (CP) of the opposite sense to that produced by G-shaped strip over the frequency range 5-6 GHz. The antenna design is explained and its performance is investigated through simulation, as well as experimental measurements. This antenna can be viewed as composed of a semicircular strip terminated with a horizontal extension at its lower end and terminated with a small circular patch through a corner-shaped strip extension at its upper end to form the shape of "G" or inverted "G". The purpose of the corner-shaped extension and the circular patch termination is to match the antenna impedance to 50 Ω over the entire frequency band (5-19 GHz) and to improve the circular polarization over the frequency band (5-6 GHz). To be fabricated on only one face of the flexible dielectric substrate, the antenna is fed through a co-planar waveguide (CPW). The antenna and the CPW dimensions are optimized to obtain the most optimal performance regarding the impedance matching bandwidth, 3dB Axial Ratio (AR) bandwidth, radiation efficiency, and maximum gain. The results show that the achieved 3dB-AR bandwidth is 18% (5-6 GHz). Thus, the proposed antenna covers the 5 GHz frequency band of the WiMAX/WLAN applications within its 3dB-AR frequency band. Furthermore, the impedance matching bandwidth is 117% (5-19 GHz) which enables low-power communication with the on-body sensors over this wide range of the frequency. The maximum gain and radiation efficiency are 5.37 dBi and 98%, respectively. The overall antenna dimensions are 25 × 27 × 0.13 mm3 and the bandwidth-dimension ratio (BDR) is 1733.


Asunto(s)
Comunicación , Tecnología Inalámbrica , Diseño de Equipo , Impedancia Eléctrica
4.
Sensors (Basel) ; 23(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37112445

RESUMEN

Wireless communication has become an integral part of modern vehicles. However, securing the information exchanged between interconnected terminals poses a significant challenge. Effective security solutions should be computationally inexpensive, ultra-reliable, and capable of operating in any wireless propagation environment. Physical layer secret key generation has emerged as a promising technique, which leverages the inherent randomness of wireless-channel responses in amplitude and phase to generate high-entropy symmetric shared keys. The sensitivity of the channel-phase responses to the distance between network terminals makes this technique a viable solution for secure vehicular communication, given the dynamic behavior of these terminals. However, the practical implementation of this technique in vehicular communication is hindered by fluctuations in the communication link between line-of-sight (LoS) and non-line-of-sight (NLoS) conditions. This study introduces a key-generation approach that uses a reconfigurable intelligent surface (RIS) to secure message exchange in vehicular communication. The RIS improves the performance of key extraction in scenarios with low signal-to-noise ratios (SNRs) and NLoS conditions. Additionally, it enhances the network's security against denial-of-service (DoS) attacks. In this context, we propose an efficient RIS configuration optimization technique that reinforces the signals received from legitimate users and weakens the signals from potential adversaries. The effectiveness of the proposed scheme is evaluated through practical implementation using a 1-bit RIS with 64×64 elements and software-defined radios operating within the 5G frequency band. The results demonstrate improved key-extraction performance and increased resistance to DoS attacks. The hardware implementation of the proposed approach further validated its effectiveness in enhancing key-extraction performance in terms of the key generation and mismatch rates, while reducing the effect of the DoS attacks on the network.

5.
Sensors (Basel) ; 23(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36772291

RESUMEN

Breathing monitoring is an efficient way of human health sensing and predicting numerous diseases. Various contact and non-contact-based methods are discussed in the literature for breathing monitoring. Radio frequency (RF)-based breathing monitoring has recently gained enormous popularity among non-contact methods. This method eliminates privacy concerns and the need for users to carry a device. In addition, such methods can reduce stress on healthcare facilities by providing intelligent digital health technologies. These intelligent digital technologies utilize a machine learning (ML)-based system for classifying breathing abnormalities. Despite advances in ML-based systems, the increasing dimensionality of data poses a significant challenge, as unrelated features can significantly impact the developed system's performance. Optimal feature scoring may appear to be a viable solution to this problem, as it has the potential to improve system performance significantly. Initially, in this study, software-defined radio (SDR) and RF sensing techniques were used to develop a breathing monitoring system. Minute variations in wireless channel state information (CSI) due to breathing movement were used to detect breathing abnormalities in breathing patterns. Furthermore, ML algorithms intelligently classified breathing abnormalities in single and multiple-person scenarios. The results were validated by referencing a wearable sensor. Finally, optimal feature scoring was used to improve the developed system's performance in terms of accuracy, training time, and prediction speed. The results showed that optimal feature scoring can help achieve maximum accuracy of up to 93.8% and 91.7% for single-person and multi-person scenarios, respectively.


Asunto(s)
Algoritmos , Aprendizaje Automático , Humanos , Monitoreo Fisiológico , Respiración , Ondas de Radio
6.
Sensors (Basel) ; 22(8)2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35459080

RESUMEN

Achieving accurate single snapshot direction of arrival (DOA) information significantly improves communication performance. This paper investigates an accurate and high-resolution DOA estimation technique by enabling single snapshot data collection and enhancing DOA estimation results compared to multiple snapshot methods. This is carried out by manipulating the incoming signal covariance matrix while suppressing undesired additive white Gaussian noise (AWGN) by actively updating and estimating the antenna array manifold vector. We demonstrated the estimation performance in simulation that our proposed technique supersedes the estimation performance of existing state-of-the-art techniques in various signal-to-noise ratio (SNR) scenarios and single snapshot sampling environments. Our proposed covariance-based single snapshot (CbSS) technique yields the lowest root-mean-squared error (RMSE) against the true DOA compared to root-MUSIC and the partial relaxation (PR) approach for multiple snapshots and a single signal source environment. In addition, our proposed technique presents the lowest DOA estimation performance degradation in a multiple uncorrelated and coherent signal source environment by up to 25.5% with nearly negligible bias. Lastly, our proposed CbSS technique presents the best DOA estimation results for a single snapshot and single-source scenario with an RMSE of 0.05° against the true DOA compared to root-MUSIC and the PR approach with nearly negligible bias as well. A potential application for CbSS would be in a scenario where accurate DOA estimation with a small antenna array form factor is a limitation, such as in the intelligent transportation system industry and wireless communication.


Asunto(s)
Algoritmos , Simulación por Computador , Recolección de Datos , Distribución Normal , Relación Señal-Ruido
7.
Sensors (Basel) ; 22(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35890860

RESUMEN

An ultrawide bandwidth (UWB) antenna for ground-penetrating radar (GPR) applications is designed to check soil moisture and provide good-quality images of metallic targets hidden in the soil. GPR is a promising technology for detecting and identifying buried objects, such as landmines, and investigating soil in terms of moisture content and contamination. A paddle-shaped microstrip antenna is created by cutting a rectangular patch at one of its diametrical edges fed by the coplanar waveguide technique. The antenna is loaded by stubs, shorting pins, and a split-ring resonator (SRR) metamaterial structure to increase the antenna's gain and enhance the bandwidth (BW) towards both the lower and higher end of the working BW. The antenna's performance in soil inspection is studied in terms of the operating frequency range, different types of soil, different distances (e.g., 50 cm) between the antenna arrays and soil, S-parameters, and gain. Following this, the antenna's ability to find a metallic target in the soil is tested, considering different array numbers, multi-targets, and locations. The antenna is designed on a thin layer of economic polytetrafluoroethylene (PTFE) substrate with dimensions 50 × 39 × 0.508 mm3 and works in the frequency range 1.9-9.2 GHz. In addition, two more resonances at 0.9 and 1.8 GHz are also achieved; hence, the antenna works for more than two application bands, such as the ISM- and L-bands. The measurement results validated excellent agreement with the simulated results. Furthermore, the recommended antenna offering a high gain of about 10.8 dBi and maximum efficiency above 97% proved able to discriminate between hidden objects and even recognize their shapes. Moreover, the reconstructed images show that the antenna can detect an object in the soil at any location.

8.
Sensors (Basel) ; 22(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35890950

RESUMEN

Locating a missing child or elderly person in a large gathering through face recognition in videos is still challenging because of various dynamic factors. In this paper, we present an intelligent mechanism for tracking missing persons in an unconstrained large gathering scenario of Al-Nabawi Mosque, Madinah, KSA. The proposed mechanism in this paper is unique in two aspects. First, there are various proposals existing in the literature that deal with face detection and recognition in high-quality images of a large crowd but none of them tested tracking of a missing person in low resolution images of a large gathering scenario. Secondly, our proposed mechanism is unique in the sense that it employs four phases: (a) report missing person online through web and mobile app based on spatio-temporal features; (b) geo fence set estimation for reducing search space; (c) face detection using the fusion of Viola Jones cascades LBP, CART, and HAAR to optimize the results of the localization of face regions; and (d) face recognition to find a missing person based on the profile image of reported missing person. The overall results of our proposed intelligent tracking mechanism suggest good performance when tested on a challenging dataset of 2208 low resolution images of large crowd gathering.


Asunto(s)
Algoritmos , Reconocimiento de Normas Patrones Automatizadas , Anciano , Niño , Aglomeración , Cara , Humanos , Reconocimiento de Normas Patrones Automatizadas/métodos , Reconocimiento en Psicología
9.
Sensors (Basel) ; 22(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36298110

RESUMEN

In this paper, a novel embedded helix dielectric rod antenna is presented for high gain radiation with circular polarization (CP) and low side lobe levels for IoT Applications. Different from the conventional dielectric rod antennas, this proposed antenna is an integrated structure that combines the advantages of the helix and dielectric rod antennas. The presented antenna mainly consists of three parts: a tapered helix as primary feeding for CP, a dielectric rod with printed loops embedded for higher directivity, and a dielectric rod end for improving the gain further. After studying and analyzing the working principles of each part, an optimum design operating at 8-9.7 GHz is carried out as an example. A prototype is also fabricated and tested. The measured results show that the prototype can provide 18.41 dB maximum gain within the length of 7.7 λ. The side lobe level is below -20 dB, and the axial ratio is better than 1.14 dB in the whole frequency band. Compared with the traditional helix antenna and dielectric rod antenna with the same electric length, the presented antenna has a higher gain with a lower side lobe level and with good polarization purity.


Asunto(s)
Electricidad , Tecnología Inalámbrica , Diseño de Equipo , Refracción Ocular
10.
Sensors (Basel) ; 22(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35161898

RESUMEN

The probability of losing vulnerable companions, such as children or older ones, in large gatherings is high, and their tracking is challenging. We proposed a novel integration of face-recognition algorithms with a soft voting scheme, which was applied, on low-resolution cropped images of detected faces, in order to locate missing persons in a challenging large-crowd gathering. We considered the large-crowd gathering scenarios at Al Nabvi mosque Madinah. It is a highly uncontrolled environment with a low-resolution-images data set gathered from moving cameras. The proposed model first performs real-time face-detection from camera-captured images, and then it uses the missing person's profile face image and applies well-known face-recognition algorithms for personal identification, and their predictions are further combined to obtain more mature prediction. The presence of a missing person is determined by a small set of consecutive frames. The novelty of this work lies in using several recognition algorithms in parallel and combining their predictions by a unique soft-voting scheme, which in return not only provides a mature prediction with spatio-temporal values but also mitigates the false results of individual recognition algorithms. The experimental results of our model showed reasonably good accuracy of missing person's identification in an extremely challenging large-gathering scenario.


Asunto(s)
Cara , Reconocimiento Facial , Algoritmos , Niño , Humanos , Política
11.
Sensors (Basel) ; 22(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35591019

RESUMEN

Designing an ultra-wideband array antenna for fifth generation (5G) is challenging for the antenna designing community because of the highly fragmented electromagnetic spectrum. To overcome bandwidth limitations, several millimeter-wave bands for 5G and beyond applications are considered; as a result, many antenna arrays have been proposed during the past decades. This paper aims to explore recent developments and techniques regarding a specific type of phased array antenna used in 5G applications, called current sheet array (CSA). CSA consists of capacitively coupled elements placed over a ground plane, with mutual coupling intentionally introduced in a controlled manner between the elements. CSA concept evolved and led to the realization of new array antennas with multiple octaves of bandwidth. In this review article, we provide a comprehensive overview of the existing works in this line of research. We analyze and discuss various aspects of the proposed array antennas with the wideband and wide-scan operation. Additionally, we discuss the significance of the phased array antenna in 5G communication. Moreover, we describe the current research challenges and future directions for CSA-based phased array antennas.

12.
Sensors (Basel) ; 22(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36236272

RESUMEN

Human activity monitoring is a fascinating area of research to support autonomous living in the aged and disabled community. Cameras, sensors, wearables, and non-contact microwave sensing have all been suggested in the past as methods for identifying distinct human activities. Microwave sensing is an approach that has lately attracted much interest since it has the potential to address privacy problems caused by cameras and discomfort caused by wearables, especially in the healthcare domain. A fundamental drawback of the current microwave sensing methods such as radar is non-line-of-sight and multi-floor environments. They need precise and regulated conditions to detect activity with high precision. In this paper, we have utilised the publicly available online database based on the intelligent reflecting surface (IRS) system developed at the Communications, Sensing and Imaging group at the University of Glasgow, UK (references 39 and 40). The IRS system works better in the multi-floor and non-line-of-sight environments. This work for the first time uses algorithms such as support vector machine Bagging and Decision Tree on the publicly available IRS data and achieves better accuracy when a subset of the available data is considered along specific human activities. Additionally, the work also considers the processing time taken by the classier in training stage when exposed to the IRS data which was not previously explored.


Asunto(s)
Actividades Humanas , Radar , Anciano , Algoritmos , Atención a la Salud , Humanos , Máquina de Vectores de Soporte
13.
Sensors (Basel) ; 22(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35214253

RESUMEN

The global pandemic of the coronavirus disease (COVID-19) is dramatically changing the lives of humans and results in limitation of activities, especially physical activities, which lead to various health issues such as cardiovascular, diabetes, and gout. Physical activities are often viewed as a double-edged sword. On the one hand, it offers enormous health benefits; on the other hand, it can cause irreparable damage to health. Falls during physical activities are a significant cause of fatal and non-fatal injuries. Therefore, continuous monitoring of physical activities is crucial during the quarantine period to detect falls. Even though wearable sensors can detect and recognize human physical activities, in a pandemic crisis, it is not a realistic approach. Smart sensing with the support of smartphones and other wireless devices in a non-contact manner is a promising solution for continuously monitoring physical activities and assisting patients suffering from serious health issues. In this research, a non-contact smart sensing through the walls (TTW) platform is developed to monitor human physical activities during the quarantine period using software-defined radio (SDR) technology. The developed platform is intelligent, flexible, portable, and has multi-functional capabilities. The received orthogonal frequency division multiplexing (OFDM) signals with fine-grained 64-subcarriers wireless channel state information (WCSI) are exploited for classifying different activities by applying machine learning algorithms. The fall activity is classified separately from standing, walking, running, and bending with an accuracy of 99.7% by using a fine tree algorithm. This preliminary smart sensing opens new research directions to detect COVID-19 symptoms and monitor non-communicable and communicable diseases.


Asunto(s)
COVID-19 , Cuarentena , COVID-19/diagnóstico , Ejercicio Físico , Humanos , SARS-CoV-2 , Programas Informáticos , Tecnología
14.
Sensors (Basel) ; 22(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35408303

RESUMEN

Industry 4.0 is a new paradigm of digitalization and automation that demands high data rates and real-time ultra-reliable agile communication. Industrial communication at sub-6 GHz industrial, scientific, and medical (ISM) bands has some serious impediments, such as interference, spectral congestion, and limited bandwidth. These limitations hinder the high throughput and reliability requirements of modern industrial applications and mission-critical scenarios. In this paper, we critically assess the potential of the 60 GHz millimeter-wave (mmWave) ISM band as an enabler for ultra-reliable low-latency communication (URLLC) in smart manufacturing, smart factories, and mission-critical operations in Industry 4.0 and beyond. A holistic overview of 60 GHz wireless standards and key performance indicators are discussed. Then the review of 60 GHz smart antenna systems facilitating agile communication for Industry 4.0 and beyond is presented. We envisage that the use of 60 GHz communication and smart antenna systems are crucial for modern industrial communication so that URLLC in Industry 4.0 and beyond could soar to its full potential.


Asunto(s)
Redes de Comunicación de Computadores , Tecnología Inalámbrica , Comunicación , Industrias , Reproducibilidad de los Resultados
15.
Sensors (Basel) ; 22(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35161555

RESUMEN

Wireless sensing is the utmost cutting-edge way of monitoring different health-related activities and, concurrently, preserving most of the privacy of individuals. To meet future needs, multi-subject activity monitoring is in demand, whether it is for smart care centres or homes. In this paper, a smart monitoring system for different human activities is proposed based on radio-frequency sensing integrated with ensemble machine learning models. The ensemble technique can recognise a wide range of activity based on alterations in the wireless signal's Channel State Information (CSI). The proposed system operates at 3.75 GHz, and up to four subjects participated in the experimental study in order to acquire data on sixteen distinct daily living activities: sitting, standing, and walking. The proposed methodology merges subject count and performed activities, resulting in occupancy count and activity performed being recognised at the same time. To capture alterations owing to concurrent multi-subject motions, the CSI amplitudes collected from 51 subcarriers of the wireless signals were processed and merged. To distinguish multi-subject activity, a machine learning model based on an ensemble learning technique was designed and trained using the acquired CSI data. For maximum activity classes, the proposed approach attained a high average accuracy of up to 98%. The presented system has the ability to fulfil prospective health activity monitoring demands and is a viable solution towards well-being tracking.


Asunto(s)
Programas Informáticos , Caminata , Ambiente Controlado , Actividades Humanas , Humanos , Estudios Prospectivos
16.
Sensors (Basel) ; 22(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35062422

RESUMEN

This article presents non-invasive sensing-based diagnoses of pneumonia disease, exploiting a deep learning model to make the technique non-invasive coupled with security preservation. Sensing and securing healthcare and medical images such as X-rays that can be used to diagnose viral diseases such as pneumonia is a challenging task for researchers. In the past few years, patients' medical records have been shared using various wireless technologies. The wireless transmitted data are prone to attacks, resulting in the misuse of patients' medical records. Therefore, it is important to secure medical data, which are in the form of images. The proposed work is divided into two sections: in the first section, primary data in the form of images are encrypted using the proposed technique based on chaos and convolution neural network. Furthermore, multiple chaotic maps are incorporated to create a random number generator, and the generated random sequence is used for pixel permutation and substitution. In the second part of the proposed work, a new technique for pneumonia diagnosis using deep learning, in which X-ray images are used as a dataset, is proposed. Several physiological features such as cough, fever, chest pain, flu, low energy, sweating, shaking, chills, shortness of breath, fatigue, loss of appetite, and headache and statistical features such as entropy, correlation, contrast dissimilarity, etc., are extracted from the X-ray images for the pneumonia diagnosis. Moreover, machine learning algorithms such as support vector machines, decision trees, random forests, and naive Bayes are also implemented for the proposed model and compared with the proposed CNN-based model. Furthermore, to improve the CNN-based proposed model, transfer learning and fine tuning are also incorporated. It is found that CNN performs better than other machine learning algorithms as the accuracy of the proposed work when using naive Bayes and CNN is 89% and 97%, respectively, which is also greater than the average accuracy of the existing schemes, which is 90%. Further, K-fold analysis and voting techniques are also incorporated to improve the accuracy of the proposed model. Different metrics such as entropy, correlation, contrast, and energy are used to gauge the performance of the proposed encryption technology, while precision, recall, F1 score, and support are used to evaluate the effectiveness of the proposed machine learning-based model for pneumonia diagnosis. The entropy and correlation of the proposed work are 7.999 and 0.0001, respectively, which reflects that the proposed encryption algorithm offers a higher security of the digital data. Moreover, a detailed comparison with the existing work is also made and reveals that both the proposed models work better than the existing work.


Asunto(s)
Aprendizaje Profundo , Neumonía , Algoritmos , Teorema de Bayes , Humanos , Redes Neurales de la Computación , Neumonía/diagnóstico , Privacidad
17.
IEEE Sens J ; 21(18): 20833-20840, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35790093

RESUMEN

Contactless or non-invasive technology has a significant impact on healthcare applications such as the prediction of COVID-19 symptoms. Non-invasive methods are essential especially during the COVID-19 pandemic as they minimise the burden on healthcare personnel. One notable symptom of COVID-19 infection is a rapid respiratory rate, which requires constant real-time monitoring of respiratory patterns. In this paper, Software Defined Radio (SDR) based Radio-Frequency sensing technique and supervised machine learning algorithm is employed to provide a platform for detecting and monitoring various respiratory: eupnea, biot, bradypnea, sighing, tachypnea, and kussmaul. The variations in Channel State Information produced by human respiratory were utilised to identify distinct respiratory patterns using fine-grained Orthogonal Frequency-Division Multiplexing signals. The proposed platform based on the SDR and the Deep Multilayer Perceptron classifier exhibits the ability to effectively detect and classify the afore-mentioned distinct respiratory with an accuracy of up to 99%. Moreover, the effectiveness of the proposed scheme in terms of diagnosis accuracy, precision, recall, F1-score, and confusion matrix is demonstrated by comparison with a state-of-the-art machine learning classifier: Random Forest.

18.
IEEE Sens J ; 21(15): 17180-17188, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35789227

RESUMEN

The exponential growth of the novel coronavirus disease (N-COVID-19) has affected millions of people already and it is obvious that this crisis is global. This situation has enforced scientific researchers to gather their efforts to contain the virus. In this pandemic situation, health monitoring and human movements are getting significant consideration in the field of healthcare and as a result, it has emerged as a key area of interest in recent times. This requires a contactless sensing platform for detection of COVID-19 symptoms along with containment of virus spread by limiting and monitoring human movements. In this paper, a platform is proposed for the detection of COVID-19 symptoms like irregular breathing and coughing in addition to monitoring human movements using Software Defined Radio (SDR) technology. This platform uses Channel Frequency Response (CFR) to record the minute changes in Orthogonal Frequency Division Multiplexing (OFDM) subcarriers due to any human motion over the wireless channel. In this initial research, the capabilities of the platform are analyzed by detecting hand movement, coughing, and breathing. This platform faithfully captures normal, slow, and fast breathing at a rate of 20, 10, and 28 breaths per minute respectively using different methods such as zero-cross detection, peak detection, and Fourier transformation. The results show that all three methods successfully record breathing rate. The proposed platform is portable, flexible, and has multifunctional capabilities. This platform can be exploited for other human body movements and health abnormalities by further classification using artificial intelligence.

19.
Sensors (Basel) ; 21(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34450725

RESUMEN

The Internet of Things (IoT) and its applications in industrial settings are set to bring in the fourth industrial revolution. The industrial environment consisting of high profile manufacturing plants and a variety of equipment is inherently characterized by high reflectiveness, causing significant multi-path components that affect the propagation of wireless communications-a challenge among others that needs to be resolved. This paper provides a detailed insight into Narrow-Band IoT (NB-IoT), Industrial IoT (IIoT), and Wireless Sensor Networks (WSN) within the context of indoor industrial environments. It presents the applications of NB-IoT for industrial settings, such as the challenges associated with these applications. Furthermore, future research directions were put forth in the areas of NB-IoT network management using self-organizing network (SON) technology, edge computing for scalability enhancement, security in NB-IoT generated data, and proposing a suitable propagation model for reliable wireless communications.


Asunto(s)
Internet de las Cosas , Redes de Comunicación de Computadores , Industrias , Tecnología , Tecnología Inalámbrica
20.
Sensors (Basel) ; 21(11)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199814

RESUMEN

The health status of an elderly person can be identified by examining the additive effects of aging along with disease linked to it and can lead to 'unstable incapacity'. This health status is determined by the apparent decline of independence in activities of daily living (ADLs). Detecting ADLs provides possibilities of improving the home life of elderly people as it can be applied to fall detection systems. This paper presents fall detection in elderly people based on radar image classification by examining their daily routine activities, using radar data that were previously collected for 99 volunteers. Machine learning techniques are used classify six human activities, namely walking, sitting, standing, picking up objects, drinking water and fall events. Different machine learning algorithms, such as random forest, K-nearest neighbours, support vector machine, long short-term memory, bi-directional long short-term memory and convolutional neural networks, were used for data classification. To obtain optimum results, we applied data processing techniques, such as principal component analysis and data augmentation, to the available radar images. The aim of this paper is to improve upon the results achieved using a publicly available dataset to further improve upon research of fall detection systems. It was found out that the best results were obtained using the CNN algorithm with principal component analysis and data augmentation together to obtain a result of 95.30% accuracy. The results also demonstrated that principal component analysis was most beneficial when the training data were expanded by augmentation of the available data. The results of our proposed approach, in comparison to the state of the art, have shown the highest accuracy.


Asunto(s)
Actividades Cotidianas , Radar , Anciano , Algoritmos , Humanos , Aprendizaje Automático , Redes Neurales de la Computación , Caminata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA