Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mol Syst Biol ; 19(4): e11127, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36856068

RESUMEN

Cancers represent complex autonomous systems, displaying self-sufficiency in growth signaling. Autonomous growth is fueled by a cancer cell's ability to "secrete-and-sense" growth factors (GFs): a poorly understood phenomenon. Using an integrated computational and experimental approach, here we dissect the impact of a feedback-coupled GTPase circuit within the secretory pathway that imparts secretion-coupled autonomy. The circuit is assembled when the Ras-superfamily monomeric GTPase Arf1, and the heterotrimeric GTPase Giαßγ and their corresponding GAPs and GEFs are coupled by GIV/Girdin, a protein that is known to fuel aggressive traits in diverse cancers. One forward and two key negative feedback loops within the circuit create closed-loop control, allow the two GTPases to coregulate each other, and convert the expected switch-like behavior of Arf1-dependent secretion into an unexpected dose-response alignment behavior of sensing and secretion. Such behavior translates into cell survival that is self-sustained by stimulus-proportionate secretion. Proteomic studies and protein-protein interaction network analyses pinpoint GFs (e.g., the epidermal GF) as key stimuli for such self-sustenance. Findings highlight how the enhanced coupling of two biological switches in cancer cells is critical for multiscale feedback control to achieve secretion-coupled autonomy of growth factors.


Asunto(s)
Células Eucariotas , Proteómica , Transducción de Señal , GTP Fosfohidrolasas
2.
Bioorg Chem ; 145: 107234, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412650

RESUMEN

Two new series of N-aryl acetamides 6a-o and benzyloxy benzylidenes 9a-p based 2-oxoindole derivatives were designed as potent antiproliferative multiple kinase inhibitors. The results of one-dose NCI antiproliferative screening for compounds 6a-o and 9a-p elucidated that the most promising antiproliferative scaffolds were 6f and 9f, which underwent five-dose testing. Notably, the amido congener 6f was the most potent derivative towards pancreatic ductal adenocarcinoma MDA-PATC53 and PL45 cell lines (IC50 = 1.73 µM and 2.40 µM, respectively), and the benzyloxy derivative 9f was the next potent one with IC50 values of 2.85 µM and 2.96 µM, respectively. Both compounds 6f and 9f demonstrated a favorable safety profile when tested against normal prostate epithelial cells (RWPE-1). Additionally, compound 6f displayed exceptional selectivity as a multiple kinase inhibitor, particularly targeting PDGFRα, PDGFRß, and VEGFR-2 kinases, with IC50 values of 7.41 nM, 6.18 nM, and 7.49 nM, respectively. In contrast, the reference compound Sunitinib exhibited IC50 values of 43.88 nM, 2.13 nM, and 78.46 nM against the same kinases. The derivative 9f followed closely, with IC50 values of 9.9 nM, 6.62 nM, and 22.21 nM for the respective kinases. Both 6f and 9f disrupt the G2/M cell cycle transition by upregulating p21 and reducing CDK1 and cyclin B1 mRNA levels. The interplay between targeted kinases and these cell cycle regulators underpins the G2/M cell cycle arrest induced by our compounds. Also, compounds 6f and 9f fundamentally resulted in entering MDA-PATC53 cells into the early stage of apoptosis with good percentages compared to the positive control Sunitinib. The in silico molecular-docking outcomes of scaffolds 6a-o and 9a-p in VEGFR-2, PDGFRα, and PDGFRß active sites depicted their ability to adopt essential binding interactions like the reference Sunitinib. Our designed analogs, specifically 6f and 9f, possess promising antiproliferative and kinase inhibitory properties, making them potential candidates for further therapeutic development.


Asunto(s)
Antineoplásicos , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Sunitinib/farmacología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Línea Celular Tumoral , Proliferación Celular , Antineoplásicos/farmacología , Antineoplásicos/química , Inhibidores de la Angiogénesis/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Simulación del Acoplamiento Molecular , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Estructura Molecular
3.
Curr Issues Mol Biol ; 45(4): 3347-3358, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37185743

RESUMEN

Poor visualization of polyps can limit colorectal cancer screening. Fluorescent antibodies to mucin5AC (MUC5AC), a glycoprotein upregulated in adenomas and colorectal cancer, could improve screening colonoscopy polyp detection rate. Adenomatous polyposis coli flox mice with a Cdx2-Cre transgene (CPC-APC) develop colonic polyps that contain both dysplastic and malignant tissue. Mice received MUC5AC-IR800 or IRdye800 as a control IV and were sacrificed after 48 h for near-infrared imaging of their colons. A polyp-to-background ratio (PBR) was calculated for each polyp by dividing the mean fluorescence intensity of the polyp by the mean fluorescence intensity of the background tissue. The mean 25 µg PBR was 1.70 (±0.56); the mean 50 µg PBR was 2.64 (±0.97); the mean 100 µg PBR was 3.32 (±1.33); and the mean 150 µg PBR was 3.38 (±0.87). The mean PBR of the dye-only control was 2.22 (±1.02), significantly less than the 150 µg arm (p-value 0.008). The present study demonstrates the ability of fluorescent anti-MUC5AC antibodies to specifically target and label colonic polyps containing high-grade dysplasia and intramucosal adenocarcinoma in CPC-APC mice. This technology can potentially improve the detection rate and decrease the miss rate of advanced colonic neoplasia and early cancer at colonoscopy.

4.
J Biol Chem ; 296: 100493, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33675748

RESUMEN

PDZ domains are one of the most abundant protein domains in eukaryotes and are frequently found on junction-localized scaffold proteins. Various signaling molecules bind to PDZ proteins via PDZ-binding motifs (PBM) and fine-tune cellular signaling. However, how such interaction affects protein function is difficult to predict and must be solved empirically. Here we describe a long isoform of the guanine nucleotide exchange factor GIV/Girdin (CCDC88A) that we named GIV-L, which is conserved throughout evolution, from invertebrates to vertebrates, and contains a PBM. Unlike GIV, which lacks PBM and is cytosolic, GIV-L localizes onto cell junctions and has a PDZ interactome (as shown through annotating Human Cell Map and BioID-proximity labeling studies), which impacts GIV-L's ability to bind and activate trimeric G-protein, Gαi, through its guanine-nucleotide exchange modulator (GEM) module. This GEM module is found exclusively in vertebrates. We propose that the two functional modules in GIV may have evolved sequentially: the ability to bind PDZ proteins via the PBM evolved earlier in invertebrates, whereas G-protein binding and activation may have evolved later only among vertebrates. Phenotypic studies in Caco-2 cells revealed that GIV and GIV-L may have antagonistic effects on cell growth, proliferation (cell cycle), and survival. Immunohistochemical analysis in human colon tissues showed that GIV expression increases with a concomitant decrease in GIV-L during cancer initiation. Taken together, these findings reveal how regulation in GIV/CCDC88A transcript helps to achieve protein modularity, which allows the protein to play opposing roles either as a tumor suppressor (GIV-L) or as an oncogene (GIV).


Asunto(s)
Neoplasias del Colon/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Línea Celular , Línea Celular Tumoral/fisiología , Proliferación Celular , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Humanos , Proteínas de Microfilamentos/química , Dominios PDZ , Fosforilación , Unión Proteica , Isoformas de Proteínas , Transporte de Proteínas , Transducción de Señal , Proteínas de Transporte Vesicular/química , Pez Cebra
5.
J Enzyme Inhib Med Chem ; 37(1): 349-372, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34923887

RESUMEN

In this study, different assortments of 2-arylquinolines and 2,6-diarylquinolines have been developed. Recently, we have developed a new series of 6,7-dimethoxy-4-alkoxy-2-arylquinolines as Topoisomerase I (TOP1) inhibitors with potent anticancer activity. Utilising the SAR outputs from this study, we tried to enhance anticancer and TOP1 inhibitory activities. Though target quinolines demonstrated potent antiproliferative effect, specifically against colorectal cancer DLD-1 and HCT-116, they showed weak TOP1 inhibition which may be attributable to their non-coplanarity. Thereafter, screening against kinase panel revealed their dual inhibitory activity against EGFR and FAK. Quinolines 6f, 6h, 6i, and 20f were the most potent EGFR inhibitors (IC50s = 25.39, 20.15, 22.36, and 24.81 nM, respectively). Meanwhile, quinolines 6f, 6h, 6i, 16d, and 20f exerted the best FAK inhibition (IC50s = 22.68, 14.25, 18.36, 17.36, and 15.36 nM, respectively). Finally, molecular modelling was employed to justify the promising EGFR/FAK inhibition. The study outcomes afforded the first reported quinolines with potent EGFR/FAK dual inhibition.


Asunto(s)
Antineoplásicos/farmacología , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Quinolinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Quinolinas/síntesis química , Quinolinas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
6.
J Enzyme Inhib Med Chem ; 37(1): 1346-1363, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35548854

RESUMEN

A series of novel 1,2,3-triazole-linked ciprofloxacin-chalcones 4a-j were synthesised as potential anticancer agents. Hybrids 4a-j exhibited remarkable anti-proliferative activity against colon cancer cells. Compounds 4a-j displayed IC50s ranged from 2.53-8.67 µM, 8.67-62.47 µM, and 4.19-24.37 µM for HCT116, HT29, and Caco-2 cells; respectively, whereas the doxorubicin, showed IC50 values of 1.22, 0.88, and 4.15 µM. Compounds 4a, 4b, 4e, 4i, and 4j were the most potent against HCT116 with IC50 values of 3.57, 4.81, 4.32, 4.87, and 2.53 µM, respectively, compared to doxorubicin (IC50 = 1.22 µM). Also, hybrids 4a, 4b, 4e, 4i, and 4j exhibited remarkable inhibitory activities against topoisomerase I, II, and tubulin polymerisation. They increased the protein expression level of γH2AX, indicating DNA damage, and arrested HCT116 in G2/M phase, possibly through the ATR/CHK1/Cdc25C pathway. Thus, the novel ciprofloxacin hybrids could be exploited as potential leads for further investigation as novel anticancer medicines to fight colorectal carcinoma.


Asunto(s)
Antineoplásicos , Chalcona , Chalconas , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Células CACO-2 , Línea Celular Tumoral , Proliferación Celular , Chalcona/farmacología , Chalconas/metabolismo , Chalconas/farmacología , Ciprofloxacina/farmacología , Daño del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Doxorrubicina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Polimerizacion , Relación Estructura-Actividad , Triazoles/farmacología , Tubulina (Proteína)/metabolismo
7.
J Enzyme Inhib Med Chem ; 37(1): 2265-2282, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36000167

RESUMEN

New series of thiazolyl-pyrazoline derivatives (7a-7d, 10a-10d and 13a-13f) have been synthesised and assessed for their potential EGFR and VEGFR-2 inhibitory activities. Compounds 10b and 10d exerted potent and selective inhibitory activity towards the two receptor tyrosine kinases; EGFR (IC50 = 40.7 ± 1.0 and 32.5 ± 2.2 nM, respectively) and VEGFR-2 (IC50 = 78.4 ± 1.5 and 43.0 ± 2.4 nM, respectively). The best anti-proliferative activity for the examined thiazolyl-pyrazolines was observed against the non-small lung cancer cells (NSCLC). Compounds 10b and 10d displayed pronounced efficacy against A549 (IC50 = 4.2 and 2.9 µM, respectively) and H441 cell lines (IC50 = 4.8 and 3.8 µM, respectively). Moreover, our results indicated that 10b and 10d were much more effective towards EGFR-mutated NSCLC cell lines (NCI-H1650 and NCI-H1975 cells) than gefitinib. Finally, compounds 10b and 10d induce G2/M cell cycle arrest and apoptosis and inhibit migration in A549 cancerous cells.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Pirazoles/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazoles/química , Relación Estructura-Actividad , Receptor 2 de Factores de Crecimiento Endotelial Vascular
8.
Bioorg Med Chem Lett ; 40: 127965, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33744442

RESUMEN

Small molecule inhibitors of the focal adhesion kinase are regarded as promising tools in our armamentarium for treating cancer. Here, we identified four 1,2,4-triazole derivatives that inhibit FAK kinase significantly and evaluated their therapeutic potential. Most tested compounds revealed potent antiproliferative activity in HepG2 and Hep3B liver cancer cells, in which 3c and 3d were the most potent (IC50 range; 2.88 ~ 4.83 µM). Compound 3d possessed significant FAK inhibitory activity with IC50 value of 18.10 nM better than the reference GSK-2256098 (IC50 = 22.14 nM). The preliminary mechanism investigation by Western blot analysis showed that both 3c and 3d repressed FAK phosphorylation comparable to GSK-2256098 in HepG2 cells. As a result of FAK inhibition, 3c and 3d inhibited the pro-survival pathways by decreasing the phosphorylation levels of PI3K, Akt, JNK, and STAT3 proteins. This effect led to apoptosis induction and cell cycle arrest. Taken together, these results indicate that 3d could serve as a potent preclinical candidate for the treatment of cancers.


Asunto(s)
Acetanilidas/farmacología , Aminobenzoatos/farmacología , Antineoplásicos/farmacología , Quinasa 1 de Adhesión Focal/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Triazoles/farmacología , Acetanilidas/síntesis química , Aminobenzoatos/síntesis química , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Quinasa 1 de Adhesión Focal/química , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , Fosforilación/efectos de los fármacos , Unión Proteica , Inhibidores de Proteínas Quinasas/síntesis química , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Triazoles/síntesis química
9.
Am J Physiol Cell Physiol ; 316(5): C641-C648, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30789753

RESUMEN

Insensitivity to the antiobesity hormone, leptin, has been suggested to be involved in the pathogenesis of obesity. However, the pathological mechanisms underlying the development of leptin resistance are not well-understood. This study aimed to examine the pathological mechanisms of leptin resistance in obesity. In the present study, we found that 4-hydroxy-2-nonenal (4-HNE), an aldehyde, may be involved in the development of leptin resistance. The SH-SY5Y-Ob-Rb human neuroblastoma cell line, transfected to express the Ob-Rb leptin receptor stably, was treated with 4-HNE, and leptin-induced signal transduction was analyzed. We found that 4-HNE dose- and time-dependently inhibited leptin-induced signal transducer and activator of transcription 3 (STAT3) phosphorylation, a major antiobesity signal of leptin. On the other hand, 4-HNE did not affect tyrosine phosphorylation of broad cellular proteins, suggesting that the inhibitory effect may be selective to leptin signaling. Mechanistically, 4-HNE induced the eukaryotic initiation factor 2α-CCAAT/enhancer-binding protein homologous protein arm of endoplasmic reticulum stress signaling, which may be involved in the pathogenesis of leptin resistance. Overall, these results suggest that 4-HNE may partly affect endoplasmic reticulum stress-induced unfolded protein response signaling and may be involved in the pathogenesis of leptin resistance.


Asunto(s)
Aldehídos/toxicidad , Inhibidores de Cisteína Proteinasa/toxicidad , Estrés del Retículo Endoplásmico/fisiología , Leptina/metabolismo , Obesidad/metabolismo , Receptores de Leptina/metabolismo , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Leptina/antagonistas & inhibidores
10.
Bioorg Chem ; 82: 360-377, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30428415

RESUMEN

A series of quinoline-chalcone hybrids was designed as potential anti-cancer agents, synthesized and evaluated. Different cytotoxic assays revealed that compounds experienced promising activity. Compounds 9i and 9j were the most potent against all the cell lines tested with IC50 = 1.91-5.29 µM against A549 and K-562 cells. Mechanistically, 9i and 9j induced G2/M cell cycle arrest and apoptosis in both A549 and K562 cells. Moreover, all PI3K isoforms were inhibited non selectively with IC50s of 52-473 nM when tested against the two mentioned compounds with 9i being most potent against PI3K-γ (IC50 = 52 nM). Docking of 9i and 9j showed a possible formation of H-bonding with essential valine residues in the active site of PI3K-γ isoform. Meanwhile, Western blotting analysis revealed that 9i and 9j inhibited the phosphorylation of PI3K, Akt, mTOR, as well as GSK-3ß in both A549 and K562 cells, suggesting the correlation of blocking PI3K/Akt/mTOR pathway with the above antitumor activities. Together, our findings support the antitumor potential of quinoline-chalcone derivatives for NSCLC and CML by inhibiting the PI3K/Akt/mTOR pathway.


Asunto(s)
Antineoplásicos/farmacología , Chalconas/farmacología , Inhibidores Enzimáticos/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Quinolinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Dominio Catalítico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chalconas/síntesis química , Chalconas/química , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Fosfatidilinositol 3-Quinasa/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinolinas/síntesis química , Quinolinas/química , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Serina-Treonina Quinasas TOR/metabolismo
11.
Bioorg Chem ; 84: 150-163, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30502626

RESUMEN

A new series of 1,3,4-oxadiazole/chalcone hybrids was designed, synthesized, identified with different spectroscopic techniques and biologically evaluated as inhibitors of EGFR, Src, and IL-6. The synthesized compounds showed promising anticancer activity, particularly against leukemia, with 8v being the most potent. The synthesized compounds exhibited strong to moderate cytotoxic activities against K-562, KG-1a, and Jurkat leukemia cell lines in MTT assays. Compound 8v showed the strongest cytotoxic activity with IC50 of 1.95 µM, 2.36 µM and 3.45 µM against K-562, Jurkat and KG-1a leukemia cell lines, respectively. Moreover; the synthesized compounds inhibited EGFR, Src, and IL-6. Compound 8v was most effective at inhibiting EGFR (IC50 = 0.24 µM), Src (IC50 = 0.96 µM), and IL-6 (% of control = 20%). Additionally, most of the compounds decreased STAT3 activation.


Asunto(s)
Antineoplásicos/farmacología , Chalcona/farmacología , Interleucina-6/antagonistas & inhibidores , Oxadiazoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Factor de Transcripción STAT3/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chalcona/química , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Humanos , Interleucina-6/metabolismo , Estructura Molecular , Oxadiazoles/química , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Factor de Transcripción STAT3/metabolismo , Relación Estructura-Actividad
12.
Biotechnol Lett ; 40(6): 915-922, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29619746

RESUMEN

OBJECTIVE: The exposure of organelles, such as the endoplasmic reticulum (ER), Golgi apparatus (GA), and lysosomes, to stress activates death mechanisms. Recently, telomerase reverse transcriptase (TERT) has been shown to be involved in cell survival. However, the relationship between TERT and the stress responses is still unclear. Here, we aimed to clarify the possible mechanisms of action through which TERT promotes cell survival by studying its effect on the stresses faced by multiple organelles in human fibroblasts. RESULTS: We found that TERT enhanced the survival rate of cells under ER stress, regardless of ER stress inducers such as tunicamycin (protein glycosylation inhibitor), thapsigargin (Ca2+-ATPase inhibitor), brefeldin A (protein transport inhibitor), or dithiothreitol (disulfide bond formation inhibitor). We also found that TERT enhanced the survival rate of cells under GA and lysosomal stresses. CONCLUSION: Collectively, these results suggest that TERT suppresses cell stress and promotes cell survival via different mechanisms. These findings may offer new insights into the implications of TERT in the treatment of stress-induced conditions such as aging, obesity, and neurodegenerative diseases.


Asunto(s)
Estrés del Retículo Endoplásmico , Fibroblastos , Aparato de Golgi , Lisosomas , Telomerasa , Línea Celular , Supervivencia Celular/fisiología , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/fisiología , Fibroblastos/metabolismo , Fibroblastos/fisiología , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Telomerasa/genética , Telomerasa/fisiología
13.
Bioorg Med Chem ; 24(19): 4636-4646, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27555286

RESUMEN

New N-4-piperazinyl derivatives of ciprofloxacin 2a-g were prepared and tested for their cytotoxic activity. The primary in vitro one dose anticancer assay experienced promising cytotoxic activity against different cancer cell lines especially non-small cell lung cancer. Independently, compounds 2b, 2d, 2f and 2g showed anticancer activity against human non-small cell lung cancer A549 cells (IC50=14.8, 24.8, 23.6 and 20.7µM, respectively) compared to the parent ciprofloxacin (IC50 >100µM) and doxorubicin as a positive control (IC50=1µM). The flow cytometric analysis for 2b showed dose dependent G2/M arrest in A549 cells. Also, 2b increased the expression of p53 and p21 and decreased the expression of cyclin B1 and Cdc2 proteins in A549 cells without any effect on the same proteins expression in WI-38 cells. Specific inhibition of p53 by pifithrin-α reversed the G2/M phase arrest induced by the 2b compound, suggesting contribution of p53 to increase. Taken together, 2b induced G2/M phase arrest via p53/p21 dependent pathway. The results indicate that 2b can be used as a lead compound for further development of new derivatives against non-small cell lung cancer.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Ciprofloxacina/análogos & derivados , Ciprofloxacina/farmacología , Piperazinas/química , Piperazinas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Fase G2/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo
15.
Pharmaceutics ; 15(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36678796

RESUMEN

Recently, the potential use of nanoparticles for the targeted delivery of therapeutic and diagnostic agents has garnered increased interest. Several nanoparticle drug delivery systems have been developed for cancer treatment. Typically, protein-based nanocarriers offer several advantages, including biodegradability and biocompatibility. Using genetic engineering or chemical conjugation approaches, well-known naturally occurring protein nanoparticles can be further prepared, engineered, and functionalized in their self-assembly to meet the demands of clinical production efficiency. Accordingly, promising protein nanoparticles have been developed with outstanding tumor-targeting capabilities, ultimately overcoming multidrug resistance issues, in vivo delivery barriers, and mimicking the tumor microenvironment. Bioinspired by natural nanoparticles, advanced computational techniques have been harnessed for the programmable design of highly homogenous protein nanoparticles, which could open new routes for the rational design of vaccines and drug formulations. The current review aims to present several significant advancements made in protein nanoparticle technology, and their use in cancer therapy. Additionally, tailored construction methods and therapeutic applications of engineered protein-based nanoparticles are discussed.

16.
iScience ; 26(2): 105973, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36756378

RESUMEN

Upon sensing DNA double-strand breaks (DSBs), eukaryotic cells either die or repair DSBs via one of the two competing pathways, i.e., non-homologous end-joining (NHEJ) or homologous recombination (HR). We show that cell fate after DSBs hinges on GIV/Girdin, a guanine nucleotide-exchange modulator of heterotrimeric Giα•ßγ protein. GIV suppresses HR by binding and sequestering BRCA1, a key coordinator of multiple steps within the HR pathway, away from DSBs; it does so using a C-terminal motif that binds BRCA1's BRCT-modules via both phospho-dependent and -independent mechanisms. Using another non-overlapping C-terminal motif GIV binds and activates Gi and enhances the "free" Gßγ→PI-3-kinase→Akt pathway, which promotes survival and is known to suppress HR, favor NHEJ. Absence of GIV, or loss of either of its C-terminal motifs enhanced cell death upon genotoxic stress. Because GIV selectively binds other BRCT-containing proteins suggests that G-proteins may fine-tune sensing, repair, and survival after diverse types of DNA damage.

17.
Eur J Med Chem ; 243: 114704, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36095992

RESUMEN

Pharmacologic inhibition of the oncogenic protein kinases using small molecules is a promising strategy to combat several human malignancies. CDK1 is an example of such a valuable target for the management of pancreatic ductal adenocarcinomas (PDAC); its overexpression in PDAC positively correlates with the size, histological grade and tumor aggressiveness. Here we report the identification of novel series of 1-piperazinyl-4-benzylphthalazine derivatives (8a-g, 10a-i and 12a-d) as promising anticancer agents with CDK1 inhibitory activity. The anti-proliferative activity of these agents was first screened on a panel of 11 cell lines representing 5 cancers (pancreas, melanoma, leukemia, colon and breast), and then confirmed on two CDK1-overexpressing PDAC cell lines (MDA-PATC53 and PL45 cells). Phthalazines 8g, 10d and 10h displayed potent activity against MDA-PATC53 (IC50 = 0.51, 0.88 and 0.73 µM, respectively) and PL45 (IC50 = 0.74, 1.14 and 1.00 µM, respectively) cell lines. Furthermore, compounds 8g, 10d and 10h exhibited potent and selective inhibitory activity toward CDK1 with IC50 spanning in the range 36.80-44.52 nM, whereas they exerted weak inhibitory effect on CDK2, CDK5, AXL, PTK2B, FGFR, JAK1, IGF1R and BRAF kinases. Western blotting of CDK1 in MDA-PATC53 cells confirmed the ability of target phthalazines to diminish the CDK1 levels, and cell cycle analyses revealed their ability to arrest the cell cycle at G2/M phase. In conclusion, a panel of potent and selective CDK1 inhibitors were identified which can serve as lead compounds for designing further CDK1 inhibitors.


Asunto(s)
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Ftalazinas/farmacología , Piperazina/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Inhibidores de Proteínas Quinasas/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Proteína Quinasa CDC2 , Neoplasias Pancreáticas
18.
Animals (Basel) ; 11(8)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34438714

RESUMEN

During the last decade's increase of antimicrobial resistance (AMR) in animals, animal-human transmission has become a major threat. Therefore, the present study aimed to evaluate the genetic basis of AMR in Gram-negative bacteria recovered from sheep and goats with respiratory disease. Nasal and ocular swabs were collected from 69 diseased animals, and 76 Gram-negative bacterial isolates were identified from 59 animals. All isolates were checked phenotypically for resistance and genotypically for different resistance mechanisms, including ß-lactam, quinolone, and aminoglycoside resistance. Our results demonstrated that 9.2% (95% CI 4.5-17.8%) of the isolates were multidrug-resistant, with high resistance rates to ß-lactams and quinolones, and 11.8% (95% CI 6.4-21%) and 6.6% (95% CI 2.8-14.5%) of the isolates were phenotypically positive for AmpC and ESBL, respectively. Genotypically, blaTEM was the most identified ß-lactamase encoding gene in 29% (95% CI 20-40%) of the isolates, followed by blaSHV (14.5%, 95% CI 8.3-24.1%) and blaCTX-M (4%, 95% CI 1.4-11%). Furthermore, 7.9% (95% CI 3.7-16.2%) of the isolates harbored plasmid-mediated quinolone resistance gene qnrS. Our study revealed for the first time to our knowledge high ß-lactam and quinolone resistance associated with the bacteria recovered from sheep and one goat with respiratory disease. Furthermore, different antimicrobial resistant determinants were identified for the first time from animals in Africa, such as blaLEN-13/55, blaTEM-176 and blaTEM-198/214. This study highlights the potential role of sheep and goats in disseminating AMR determinants and/or resistant bacteria to humans. The study regenerates interest for the development of a One Health approach to combat this formidable problem.

19.
Eur J Med Chem ; 222: 113569, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34111829

RESUMEN

Novel 5-pyridinyl-1,2,4-triazoles were designed as dual inhibitors of histone deacetylase 2 (HDAC2) and focal adhesion kinase (FAK). Compounds 5d, 6a, 7c, and 11c were determined as potential inhibitors of both HDAC2 (IC50 = 0.09-1.40 µM) and FAK (IC50 = 12.59-36.11 nM); 6a revealed the highest activity with IC50 values of 0.09 µM and 12.59 nM for HDAC2 and FAK, respectively. Compound 6a was superior to reference drugs vorinostat and valproic acid in its ability to inhibit growth/proliferation of A-498 and Caki-1 renal cancer cells. Further investigation proved that 6a strongly arrests the cell cycle at the G2/M phase and triggers apoptosis in both A-498 and Caki-1 cells. Moreover, the enhanced Akt activity that is observed upon chronic application of HDAC inhibitors was effectively suppressed by the dual HDAC2/FAK inhibitor. Finally, the high potency and selectivity of 6a towards HDAC2 and FAK proteins were rationalized by molecular docking. Taken together, these findings highlight the potential of 6a as a promising dual-acting HDAC2/FAK inhibitor that could benefit from further optimization.


Asunto(s)
Antineoplásicos/farmacología , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Histona Desacetilasa 2/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Triazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Benzamidas/química , Benzamidas/farmacología , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Quinasa 1 de Adhesión Focal/metabolismo , Histona Desacetilasa 2/metabolismo , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Triazoles/química , Células Tumorales Cultivadas
20.
Front Microbiol ; 12: 737486, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690979

RESUMEN

Background: Currently, there are no specific biomarkers for drug-induced liver injury (DILI), and the diagnosis of DILI is based mainly on the exclusion of other causes of liver dysfunction and the recognition of potential causative drugs. Hepatitis E virus (HEV) diagnosis is not routinely enrolled in many countries, and HEV infection could be misdiagnosed as DILI. Methodology: We retrospectively analyzed plasma samples (n = 80) collected from suspected DILI for HEV markers such as anti-HEV IgM, anti-HEV IgG, and HEV RNA. Anti-HEV antibodies were assessed using commercial ELISA kits. HEV RNA was tested by RT-qPCR targeting HEV ORF2/3, the receiver operating characteristic (ROC) curve was plotted, and a putative threshold for liver function parameters was determined. Results: Out of 80 samples, 12 samples were positive for anti-HEV IgM and anti-HEV IgG, and HEV RNA was detected in seven samples. The median viral load was 3.46 × 103 IU/ml, and the isolated viruses belonged to HEV genotype 1. The level of liver enzymes such as alanine transaminase (ALT) and aspartate transaminase (AST), but not alkaline phosphatase (ALP), was significantly higher in HEV confirmed cases than in non-HEV confirmed cases. We identified a plasma ALT level of at least 415.5 U/L and AST level of at least 332 U/L; ALT/ALP ratio of at least 5.08 could be used as a guide for the patients diagnosed as DILI to be tested for HEV infection. The previous liver function parameters showed high sensitivity and good specificity. Conclusion: Hepatitis E virus was detected in suspected DILI cases. The diagnosis of DILI is not secure until HEV testing is done. Liver function parameters can be used as a guide for HEV testing in suspected DILI cases in countries with limited resources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA