Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 130(26): 8406-13, 2008 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-18528989

RESUMEN

The coordinating properties of the diaminocarbene (A) and phosphonium ylide (B) ligand types have been investigated systematically through a test family of C,C-chelating ligands containing two moieties of either kind. The overall character of o-C6H4A(a)B(b) ligands (a + b = 2) has been analyzed from the IR CO stretching frequencies of isostructural complexes [(eta(2)-C6H4A(a)B(b))Rh(CO)2][TfO]. The test moieties A = NC2H2N(+)(Me)C(-) and B = Ph2P(+)CH2(-) were first considered. While the ligands bearing at least one diaminocarbene end (AA, a = 2 and AB, a = 1) could be generated (and trapped by complexation), the bis-ylide case BB (a = 0) proved to be awkward: treatment of the dication C6H4(P(+)Ph2Me)2 with n-BuLi indeed lead to the Schmidbaur's carbodiphosphorane Ph3PCPPh2Me, through an unprecendented ylido-pentacoordinated phosphorane which could be fully characterized by NMR techniques. The bis-ylide ligand type C6H4B2 could however be generated by bridging the phosphonium methyl groups by a methylene link (B2 = (P(+)Ph2CH(-))2CH2), preventing the formation of the analogous highly strained carbodiphosphorane. The three complexes [(eta(2)-C6H4A(a)B(b))Rh(CO)2][TfO] were fully characterized, including by X-ray diffraction analysis and (103)Rh NMR spectroscopy. Comparison of their IR spectra indicated that the A2 type bis-NHC ligand is less donating than the hybrid AB type, which is itself less donating than the B2 type bis-ylide ligand. The excellent linear variation of the nu(CO) frequencies vs a (= 0, 1, 2) shows that the coordinating moieties act in a pseudoindependent way. This was confirmed by DFT calculations at the B3PW91/6-31G**/LANL2DZ*(Rh) level. It is therefore demonstrated that a phosphonium ylide ligand is a stronger donor than a diaminocarbene ligand.

2.
Dalton Trans ; (40): 8493-508, 2009 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-19809724

RESUMEN

A series of five vicinal bis(alkyl-triarylphosphoniums) derived from o-bis(diphenyl-phosphino)benzene (o-dppb) is described. Each of them have been prepared by specific methods, and their formal electrostatic and possible van der Waals strain is compared through the P+...P+ distances in the crystal state. According to X-ray diffraction analyses, while the conformations of the dimethyl dication is C2 symmetric, the conformation of alka-1,n-diyl-diphosphoniums (n = 1, 2, 3) is pseudo-Cs symmetric. The solution structure of the dimethyldiphosphonium 2 was studied by NMR techniques after metathesis of the triflate counterions with enantiomerically pure X-PHAT chiral anions (X = TRIS, BIN). [(Delta)-BINPHAT] was indirectly shown to discriminate between the enantiomers of the diphosphonium, but no effective enantio-differentiation could be measured down to -70 degrees C in CD2Cl2. When associated to [(Delta)-TRISPHAT] counterions, progressive cleavage of the diphosphonium afforded the corresponding methyl-triphenyl-monophosphonium salt. In the bridged series, the diphosphoniacyclopentene dication was found to be stable in spite of the very short transannular P+...P+ distance (2.83 A). The naturally more relaxed homologous diphosphoniacyclohexene dication (P+...P+ = 3.28 A) was found to be flexible in solution, as indicated by the equivalence of the four protons of the +P-CH2CH2-P+ bridge from 20 degrees C to -80 degrees C in acetone-d6. The two diphosphoniacycloheptene dications exhibit no P+...P+ steric compression (ca 3.64 A), just as the dimethyl dication (3.70 A). In solution, the seven-membered ring of the +P-CH2CR2CH2-P+ dications (R = H, Me) remains rigidly Cs symmetric: no interconversion of the pseudo-axial and pseudo-equatorial R groups is evidenced at the NMR time scale at -95 degrees C (coalescence at -20 degrees C for R = H, at -65 degrees C for R = Me). According to DFT calculations at the B3PW91/6-31G** level in 1,2-dichloroethane (DCE: PCM, epsilon = 10.36), the lowest energy conformation is indeed Cs-symmetric. However a quasi-isoenergetic C2-symmetric conformation which is the most stable in the gas phase is also found, and is thus a likely intermediate in the observed Cs <==> Cs interconversion. This +P-CH2CMe2CH2-P+ diphosphonium was obtained by dialkylation of o-dppb with 2,2-dimethylpropan-1,3-diyl bistriflate in DCE at 80 degrees C. The use of this solvent was the key for the synthesis of this dication, which was however competitively produced along with some +P-CH2CH2-P+ dication. The latter was also obtained by a totally different route, by heating a sulfinylethyl monophosphonium salt of o-dppb in the presence of the cationic complex [Rh(cod)2][PF6]. A mechanism for this peculiar process is proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA