Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(28): e2305236120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399400

RESUMEN

Plasma cell-free DNA (cfDNA) is a noninvasive biomarker for cell death of all organs. Deciphering the tissue origin of cfDNA can reveal abnormal cell death because of diseases, which has great clinical potential in disease detection and monitoring. Despite the great promise, the sensitive and accurate quantification of tissue-derived cfDNA remains challenging to existing methods due to the limited characterization of tissue methylation and the reliance on unsupervised methods. To fully exploit the clinical potential of tissue-derived cfDNA, here we present one of the largest comprehensive and high-resolution methylation atlas based on 521 noncancer tissue samples spanning 29 major types of human tissues. We systematically identified fragment-level tissue-specific methylation patterns and extensively validated them in orthogonal datasets. Based on the rich tissue methylation atlas, we develop the first supervised tissue deconvolution approach, a deep-learning-powered model, cfSort, for sensitive and accurate tissue deconvolution in cfDNA. On the benchmarking data, cfSort showed superior sensitivity and accuracy compared to the existing methods. We further demonstrated the clinical utilities of cfSort with two potential applications: aiding disease diagnosis and monitoring treatment side effects. The tissue-derived cfDNA fraction estimated from cfSort reflected the clinical outcomes of the patients. In summary, the tissue methylation atlas and cfSort enhanced the performance of tissue deconvolution in cfDNA, thus facilitating cfDNA-based disease detection and longitudinal treatment monitoring.


Asunto(s)
Ácidos Nucleicos Libres de Células , Aprendizaje Profundo , Humanos , Ácidos Nucleicos Libres de Células/genética , Metilación de ADN , Biomarcadores , Regiones Promotoras Genéticas , Biomarcadores de Tumor/genética
2.
Radiology ; 309(1): e222904, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37815447

RESUMEN

The implementation of low-dose chest CT for lung screening presents a crucial opportunity to advance lung cancer care through early detection and interception. In addition, millions of pulmonary nodules are incidentally detected annually in the United States, increasing the opportunity for early lung cancer diagnosis. Yet, realization of the full potential of these opportunities is dependent on the ability to accurately analyze image data for purposes of nodule classification and early lung cancer characterization. This review presents an overview of traditional image analysis approaches in chest CT using semantic characterization as well as more recent advances in the technology and application of machine learning models using CT-derived radiomic features and deep learning architectures to characterize lung nodules and early cancers. Methodological challenges currently faced in translating these decision aids to clinical practice, as well as the technical obstacles of heterogeneous imaging parameters, optimal feature selection, choice of model, and the need for well-annotated image data sets for the purposes of training and validation, will be reviewed, with a view toward the ultimate incorporation of these potentially powerful decision aids into routine clinical practice.


Asunto(s)
Neoplasias Pulmonares , Nódulos Pulmonares Múltiples , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Nódulos Pulmonares Múltiples/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Tomografía Computarizada por Rayos X
3.
Eur Respir J ; 61(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36229050

RESUMEN

OBJECTIVES: Discovering airway gene expression alterations associated with radiological bronchiectasis may improve the understanding of the pathobiology of early-stage bronchiectasis. METHODS: Presence of radiological bronchiectasis in 173 individuals without a clinical diagnosis of bronchiectasis was evaluated. Bronchial brushings from these individuals were transcriptomically profiled and analysed. Single-cell deconvolution was performed to estimate changes in cellular landscape that may be associated with early disease progression. RESULTS: 20 participants have widespread radiological bronchiectasis (three or more lobes). Transcriptomic analysis reflects biological processes associated with bronchiectasis including decreased expression of genes involved in cell adhesion and increased expression of genes involved in inflammatory pathways (655 genes, false discovery rate <0.1, log2 fold-change >0.25). Deconvolution analysis suggests that radiological bronchiectasis is associated with an increased proportion of ciliated and deuterosomal cells, and a decreased proportion of basal cells. Gene expression patterns separated participants into three clusters: normal, intermediate and bronchiectatic. The bronchiectatic cluster was enriched by participants with more lobes of radiological bronchiectasis (p<0.0001), more symptoms (p=0.002), higher SERPINA1 mutation rates (p=0.03) and higher computed tomography derived bronchiectasis scores (p<0.0001). CONCLUSIONS: Genes involved in cell adhesion, Wnt signalling, ciliogenesis and interferon-γ pathways had altered expression in the bronchus of participants with widespread radiological bronchiectasis, possibly associated with decreased basal and increased ciliated cells. This gene expression pattern is not only highly enriched among individuals with radiological bronchiectasis, but also associated with airway-related symptoms in those without discernible radiological bronchiectasis, suggesting that it reflects a bronchiectasis-associated, but non-bronchiectasis-specific lung pathophysiological process.


Asunto(s)
Bronquiectasia , Humanos , Bronquiectasia/diagnóstico por imagen , Bronquiectasia/genética , Bronquios/diagnóstico por imagen , Radiografía , Tomografía Computarizada por Rayos X/métodos , Expresión Génica
4.
Eur Radiol ; 30(3): 1822, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31728683

RESUMEN

The original version of this article, published on 24 July 2014, unfortunately contained a mistake. In section "Discussion," a sentence was worded incorrectly.

5.
Thorax ; 74(6): 551-563, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30898897

RESUMEN

INTRODUCTION: We performed an external validation of the Brock model using the National Lung Screening Trial (NLST) data set, following strict guidelines set forth by the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis statement. We report how external validation results can be interpreted and highlight the role of recalibration and model updating. MATERIALS AND METHODS: We assessed model discrimination and calibration using the NLST data set. Adhering to the inclusion/exclusion criteria reported by McWilliams et al, we identified 7879 non-calcified nodules discovered at the baseline low-dose CT screen with 2 years of follow-up. We characterised differences between Pan-Canadian Early Detection of Lung Cancer Study and NLST cohorts. We calculated the slope on the prognostic index and the intercept coefficient by fitting the original Brock model to NLST. We also assessed the impact of model recalibration and the addition of new covariates such as body mass index, smoking status, pack-years and asbestos. RESULTS: While the area under the curve (AUC) of the model was good, 0.905 (95% CI 0.882 to 0.928), a histogram plot showed that the model poorly differentiated between benign and malignant cases. The calibration plot showed that the model overestimated the probability of cancer. In recalibrating the model, the coefficients for emphysema, spiculation and nodule count were updated. The updated model had an improved calibration and achieved an optimism-corrected AUC of 0.912 (95% CI 0.891 to 0.932). Only pack-year history was found to be significant (p<0.01) among the new covariates evaluated. CONCLUSION: While the Brock model achieved a high AUC when validated on the NLST data set, the model benefited from updating and recalibration. Nevertheless, covariates used in the model appear to be insufficient to adequately discriminate malignant cases.


Asunto(s)
Neoplasias Pulmonares/diagnóstico por imagen , Tamizaje Masivo , Nódulos Pulmonares Múltiples/diagnóstico por imagen , Nódulo Pulmonar Solitario/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Anciano , Calibración , Conjuntos de Datos como Asunto , Detección Precoz del Cáncer , Femenino , Adhesión a Directriz , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Nódulos Pulmonares Múltiples/patología , Valor Predictivo de las Pruebas , Probabilidad , Pronóstico , Ensayos Clínicos Controlados Aleatorios como Asunto , Medición de Riesgo/métodos , Nódulo Pulmonar Solitario/patología
6.
Expert Syst Appl ; 128: 84-95, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31296975

RESUMEN

While deep learning methods have demonstrated performance comparable to human readers in tasks such as computer-aided diagnosis, these models are difficult to interpret, do not incorporate prior domain knowledge, and are often considered as a "black-box." The lack of model interpretability hinders them from being fully understood by end users such as radiologists. In this paper, we present a novel interpretable deep hierarchical semantic convolutional neural network (HSCNN) to predict whether a given pulmonary nodule observed on a computed tomography (CT) scan is malignant. Our network provides two levels of output: 1) low-level semantic features; and 2) a high-level prediction of nodule malignancy. The low-level outputs reflect diagnostic features often reported by radiologists and serve to explain how the model interprets the images in an expert-interpretable manner. The information from these low-level outputs, along with the representations learned by the convolutional layers, are then combined and used to infer the high-level output. This unified architecture is trained by optimizing a global loss function including both low- and high-level tasks, thereby learning all the parameters within a joint framework. Our experimental results using the Lung Image Database Consortium (LIDC) show that the proposed method not only produces interpretable lung cancer predictions but also achieves significantly better results compared to using a 3D CNN alone.

7.
N Engl J Med ; 371(19): 1793-802, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25372087

RESUMEN

BACKGROUND: The National Lung Screening Trial (NLST) showed that screening with low-dose computed tomography (CT) as compared with chest radiography reduced lung-cancer mortality. We examined the cost-effectiveness of screening with low-dose CT in the NLST. METHODS: We estimated mean life-years, quality-adjusted life-years (QALYs), costs per person, and incremental cost-effectiveness ratios (ICERs) for three alternative strategies: screening with low-dose CT, screening with radiography, and no screening. Estimations of life-years were based on the number of observed deaths that occurred during the trial and the projected survival of persons who were alive at the end of the trial. Quality adjustments were derived from a subgroup of participants who were selected to complete quality-of-life surveys. Costs were based on utilization rates and Medicare reimbursements. We also performed analyses of subgroups defined according to age, sex, smoking history, and risk of lung cancer and performed sensitivity analyses based on several assumptions. RESULTS: As compared with no screening, screening with low-dose CT cost an additional $1,631 per person (95% confidence interval [CI], 1,557 to 1,709) and provided an additional 0.0316 life-years per person (95% CI, 0.0154 to 0.0478) and 0.0201 QALYs per person (95% CI, 0.0088 to 0.0314). The corresponding ICERs were $52,000 per life-year gained (95% CI, 34,000 to 106,000) and $81,000 per QALY gained (95% CI, 52,000 to 186,000). However, the ICERs varied widely in subgroup and sensitivity analyses. CONCLUSIONS: We estimated that screening for lung cancer with low-dose CT would cost $81,000 per QALY gained, but we also determined that modest changes in our assumptions would greatly alter this figure. The determination of whether screening outside the trial will be cost-effective will depend on how screening is implemented. (Funded by the National Cancer Institute; NLST ClinicalTrials.gov number, NCT00047385.).


Asunto(s)
Detección Precoz del Cáncer/economía , Esperanza de Vida , Neoplasias Pulmonares/mortalidad , Pulmón/diagnóstico por imagen , Años de Vida Ajustados por Calidad de Vida , Radiografía Torácica/economía , Tomografía Computarizada por Rayos X/economía , Anciano , Análisis Costo-Beneficio , Femenino , Costos de la Atención en Salud , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/economía , Neoplasias Pulmonares/cirugía , Masculino , Persona de Mediana Edad , Fumar , Encuestas y Cuestionarios , Estados Unidos
8.
Eur Radiol ; 27(8): 3249-3256, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28050695

RESUMEN

OBJECTIVES: This study retrospectively analyses the screening CT examinations and outcomes of the National Lung Screening Trial (NLST) participants who had interval lung cancer diagnosed within 1 year after a negative CT screen and before the next annual screen. METHODS: The screening CTs of all 44 participants diagnosed with interval lung cancer (cases) were matched with negative CT screens of participants who did not develop lung cancer (controls). A majority consensus process was used to classify each CT screen as positive or negative according to the NLST criteria and to estimate the likelihood that any abnormalities detected retrospectively were due to lung cancer. RESULTS: By retrospective review, 40/44 cases (91%) and 17/44 controls (39%) met the NLST criteria for a positive screen (P < 0.001). Cases had higher estimated likelihood of lung cancer (P < 0.001). Abnormalities included pulmonary nodules ≥4 mm (n = 16), mediastinal (n = 8) and hilar (n = 6) masses, and bronchial lesions (n = 6). Cancers were stage III or IV at diagnosis in 32/44 cases (73%); 37/44 patients (84%) died of lung cancer, compared to 225/649 (35%) for all screen-detected cancers (P < 0.0001). CONCLUSION: Most cases met the NLST criteria for a positive screen. Awareness of missed abnormalities and interpretation errors may aid lung cancer identification in CT screening. KEY POINTS: • Lung cancer within a year of a negative CT screen was rare. • Abnormalities likely due to lung cancer were identified retrospectively in most patients. • Awareness of error types may help identify lung cancer sooner.


Asunto(s)
Detección Precoz del Cáncer/normas , Neoplasias Pulmonares/diagnóstico por imagen , Tamizaje Masivo/normas , Tomografía Computarizada por Rayos X , Anciano , Errores Diagnósticos/prevención & control , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nódulos Pulmonares Múltiples/diagnóstico por imagen , Estudios Retrospectivos
9.
Lancet Oncol ; 17(5): 590-9, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27009070

RESUMEN

BACKGROUND: Annual low-dose CT screening for lung cancer has been recommended for high-risk individuals, but the necessity of yearly low-dose CT in all eligible individuals is uncertain. This study examined rates of lung cancer in National Lung Screening Trial (NLST) participants who had a negative prevalence (initial) low-dose CT screen to explore whether less frequent screening could be justified in some lower-risk subpopulations. METHODS: We did a retrospective cohort analysis of data from the NLST, a randomised, multicentre screening trial comparing three annual low-dose CT assessments with three annual chest radiographs for the early detection of lung cancer in high-risk, eligible individuals (aged 55-74 years with at least a 30 pack-year history of cigarette smoking, and, if a former smoker, had quit within the past 15 years), recruited from US medical centres between Aug 5, 2002, and April 26, 2004. Participants were followed up for up to 5 years after their last annual screen. For the purposes of this analysis, our cohort consisted of all NLST participants who had received a low-dose CT prevalence (T0) screen. We determined the frequency, stage, histology, study year of diagnosis, and incidence of lung cancer, as well as overall and lung cancer-specific mortality, and whether lung cancers were detected as a result of screening or within 1 year of a negative screen. We also estimated the effect on mortality if the first annual (T1) screen in participants with a negative T0 screen had not been done. The NLST is registered with ClinicalTrials.gov, number NCT00047385. FINDINGS: Our cohort consisted of 26 231 participants assigned to the low-dose CT screening group who had undergone their T0 screen. The 19 066 participants with a negative T0 screen had a lower incidence of lung cancer than did all 26 231 T0-screened participants (371·88 [95% CI 337·97-408·26] per 100 000 person-years vs 661·23 [622·07-702·21]) and had lower lung cancer-related mortality (185·82 [95% CI 162·17-211·93] per 100 000 person-years vs 277·20 [252·28-303·90]). The yield of lung cancer at the T1 screen among participants with a negative T0 screen was 0·34% (62 screen-detected cancers out of 18 121 screened participants), compared with a yield at the T0 screen among all T0-screened participants of 1·0% (267 of 26 231). We estimated that if the T1 screen had not been done in the T0 negative group, at most, an additional 28 participants in the T0 negative group would have died from lung cancer (a rise in mortality from 185·82 [95% CI 162·17-211·93] per 100 000 person-years to 212·14 [186·80-239·96]) over the course of the trial. INTERPRETATION: Participants with a negative low-dose CT prevalence screen had a lower incidence of lung cancer and lung cancer-specific mortality than did all participants who underwent a prevalence screen. Because overly frequent screening has associated harms, increasing the interval between screens in participants with a negative low-dose CT prevalence screen might be warranted. FUNDING: None.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias Pulmonares/diagnóstico , Pulmón/patología , Tomografía Computarizada por Rayos X , Anciano , Femenino , Humanos , Pulmón/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Masculino , Tamizaje Masivo , Persona de Mediana Edad , Dosis de Radiación , Estudios Retrospectivos , Fumar
10.
N Engl J Med ; 368(21): 1980-91, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23697514

RESUMEN

BACKGROUND: Lung cancer is the largest contributor to mortality from cancer. The National Lung Screening Trial (NLST) showed that screening with low-dose helical computed tomography (CT) rather than with chest radiography reduced mortality from lung cancer. We describe the screening, diagnosis, and limited treatment results from the initial round of screening in the NLST to inform and improve lung-cancer-screening programs. METHODS: At 33 U.S. centers, from August 2002 through April 2004, we enrolled asymptomatic participants, 55 to 74 years of age, with a history of at least 30 pack-years of smoking. The participants were randomly assigned to undergo annual screening, with the use of either low-dose CT or chest radiography, for 3 years. Nodules or other suspicious findings were classified as positive results. This article reports findings from the initial screening examination. RESULTS: A total of 53,439 eligible participants were randomly assigned to a study group (26,715 to low-dose CT and 26,724 to chest radiography); 26,309 participants (98.5%) and 26,035 (97.4%), respectively, underwent screening. A total of 7191 participants (27.3%) in the low-dose CT group and 2387 (9.2%) in the radiography group had a positive screening result; in the respective groups, 6369 participants (90.4%) and 2176 (92.7%) had at least one follow-up diagnostic procedure, including imaging in 5717 (81.1%) and 2010 (85.6%) and surgery in 297 (4.2%) and 121 (5.2%). Lung cancer was diagnosed in 292 participants (1.1%) in the low-dose CT group versus 190 (0.7%) in the radiography group (stage 1 in 158 vs. 70 participants and stage IIB to IV in 120 vs. 112). Sensitivity and specificity were 93.8% and 73.4% for low-dose CT and 73.5% and 91.3% for chest radiography, respectively. CONCLUSIONS: The NLST initial screening results are consistent with the existing literature on screening by means of low-dose CT and chest radiography, suggesting that a reduction in mortality from lung cancer is achievable at U.S. screening centers that have staff experienced in chest CT. (Funded by the National Cancer Institute; NLST ClinicalTrials.gov number, NCT00047385.).


Asunto(s)
Detección Precoz del Cáncer/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Radiografía Torácica , Tomografía Computarizada por Rayos X , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dosis de Radiación , Sensibilidad y Especificidad , Fumar , Tomografía Computarizada por Rayos X/métodos
11.
N Engl J Med ; 369(10): 920-31, 2013 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-24004119

RESUMEN

BACKGROUND: The National Lung Screening Trial was conducted to determine whether three annual screenings (rounds T0, T1, and T2) with low-dose helical computed tomography (CT), as compared with chest radiography, could reduce mortality from lung cancer. We present detailed findings from the first two incidence screenings (rounds T1 and T2). METHODS: We evaluated the rate of adherence of the participants to the screening protocol, the results of screening and downstream diagnostic tests, features of the lung-cancer cases, and first-line treatments, and we estimated the performance characteristics of both screening methods. RESULTS: At the T1 and T2 rounds, positive screening results were observed in 27.9% and 16.8% of participants in the low-dose CT group and in 6.2% and 5.0% of participants in the radiography group, respectively. In the low-dose CT group, the sensitivity was 94.4%, the specificity was 72.6%, the positive predictive value was 2.4%, and the negative predictive value was 99.9% at T1; at T2, the positive predictive value increased to 5.2%. In the radiography group, the sensitivity was 59.6%, the specificity was 94.1%, the positive predictive value was 4.4%, and the negative predictive value was 99.8% at T1; both the sensitivity and the positive predictive value increased at T2. Among lung cancers of known stage, 87 (47.5%) were stage IA and 57 (31.1%) were stage III or IV in the low-dose CT group at T1; in the radiography group, 31 (23.5%) were stage IA and 78 (59.1%) were stage III or IV at T1. These differences in stage distribution between groups persisted at T2. CONCLUSIONS: Low-dose CT was more sensitive in detecting early-stage lung cancers, but its measured positive predictive value was lower than that of radiography. As compared with radiography, the two annual incidence screenings with low-dose CT resulted in a decrease in the number of advanced-stage cancers diagnosed and an increase in the number of early-stage lung cancers diagnosed. (Funded by the National Cancer Institute; NLST ClinicalTrials.gov number, NCT00047385.).


Asunto(s)
Neoplasias Pulmonares/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Nódulo Pulmonar Solitario/diagnóstico por imagen , Detección Precoz del Cáncer/métodos , Femenino , Estudios de Seguimiento , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Nódulos Pulmonares Múltiples/diagnóstico por imagen , Valor Predictivo de las Pruebas , Radiografía Torácica , Sensibilidad y Especificidad , Tomografía Computarizada Espiral
12.
Semin Respir Crit Care Med ; 37(5): 689-707, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27732991

RESUMEN

Each year, more than 1 million persons worldwide are found to have a lung nodule that carries a risk of being malignant. In reality, the vast majority of lung nodules are benign, whether identified by screening or incidentally. The consequences of delaying or missing the diagnosis of lung cancer can be substantial, as can be the consequences of invasive procedures on patients with benign lung nodules. The challenge for the clinician caring for these patients is to differentiate between benign and malignant nodules with the least harm possible. In this review, we will discuss management strategies of the indeterminate pulmonary nodule and will review recent advances and harm-reduction strategies.


Asunto(s)
Diagnóstico Diferencial , Neoplasias Pulmonares/diagnóstico , Nódulo Pulmonar Solitario/diagnóstico , Humanos , Hallazgos Incidentales
13.
N Engl J Med ; 365(5): 395-409, 2011 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-21714641

RESUMEN

BACKGROUND: The aggressive and heterogeneous nature of lung cancer has thwarted efforts to reduce mortality from this cancer through the use of screening. The advent of low-dose helical computed tomography (CT) altered the landscape of lung-cancer screening, with studies indicating that low-dose CT detects many tumors at early stages. The National Lung Screening Trial (NLST) was conducted to determine whether screening with low-dose CT could reduce mortality from lung cancer. METHODS: From August 2002 through April 2004, we enrolled 53,454 persons at high risk for lung cancer at 33 U.S. medical centers. Participants were randomly assigned to undergo three annual screenings with either low-dose CT (26,722 participants) or single-view posteroanterior chest radiography (26,732). Data were collected on cases of lung cancer and deaths from lung cancer that occurred through December 31, 2009. RESULTS: The rate of adherence to screening was more than 90%. The rate of positive screening tests was 24.2% with low-dose CT and 6.9% with radiography over all three rounds. A total of 96.4% of the positive screening results in the low-dose CT group and 94.5% in the radiography group were false positive results. The incidence of lung cancer was 645 cases per 100,000 person-years (1060 cancers) in the low-dose CT group, as compared with 572 cases per 100,000 person-years (941 cancers) in the radiography group (rate ratio, 1.13; 95% confidence interval [CI], 1.03 to 1.23). There were 247 deaths from lung cancer per 100,000 person-years in the low-dose CT group and 309 deaths per 100,000 person-years in the radiography group, representing a relative reduction in mortality from lung cancer with low-dose CT screening of 20.0% (95% CI, 6.8 to 26.7; P=0.004). The rate of death from any cause was reduced in the low-dose CT group, as compared with the radiography group, by 6.7% (95% CI, 1.2 to 13.6; P=0.02). CONCLUSIONS: Screening with the use of low-dose CT reduces mortality from lung cancer. (Funded by the National Cancer Institute; National Lung Screening Trial ClinicalTrials.gov number, NCT00047385.).


Asunto(s)
Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/mortalidad , Tomografía Computarizada por Rayos X , Anciano , Sesgo , Femenino , Humanos , Incidencia , Neoplasias Pulmonares/prevención & control , Masculino , Persona de Mediana Edad , Cooperación del Paciente , Radiografía Torácica , Tomografía Computarizada por Rayos X/efectos adversos , Tomografía Computarizada por Rayos X/métodos
14.
Eur Radiol ; 24(11): 2719-28, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25052078

RESUMEN

OBJECTIVES: The purpose of this study was to define clinically appropriate, computer-aided lung nodule detection (CAD) requirements and protocols based on recent screening trials. In the following paper, we describe a CAD evaluation methodology based on a publically available, annotated computed tomography (CT) image data set, and demonstrate the evaluation of a new CAD system with the functionality and performance required for adoption in clinical practice. METHODS: A new automated lung nodule detection and measurement system was developed that incorporates intensity thresholding, a Euclidean Distance Transformation, and segmentation based on watersheds. System performance was evaluated against the Lung Imaging Database Consortium (LIDC) CT reference data set. RESULTS: The test set comprised thin-section CT scans from 108 LIDC subjects. The median (±IQR) sensitivity per subject was 100 (±37.5) for nodules ≥ 4 mm and 100 (±8.33) for nodules ≥ 8 mm. The corresponding false positive rates were 0 (±2.0) and 0 (±1.0), respectively. The concordance correlation coefficient between the CAD nodule diameter and the LIDC reference was 0.91, and for volume it was 0.90. CONCLUSIONS: The new CAD system shows high nodule sensitivity with a low false positive rate. Automated volume measurements have strong agreement with the reference standard. Thus, it provides comprehensive, clinically-usable lung nodule detection and assessment functionality. KEY POINTS: • CAD requirements can be based on lung cancer screening trial results. • CAD systems can be evaluated using publically available annotated CT image databases. • A new CAD system was developed with a low false positive rate. • The CAD system has reliable measurement tools needed for clinical use.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias Pulmonares/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Diagnóstico Diferencial , Femenino , Humanos , Pulmón/diagnóstico por imagen , Masculino , Curva ROC , Reproducibilidad de los Resultados
15.
JAMA Netw Open ; 7(1): e2346295, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38289605

RESUMEN

Importance: The National Lung Screening Trial (NLST) found that screening for lung cancer with low-dose computed tomography (CT) reduced lung cancer-specific and all-cause mortality compared with chest radiography. It is uncertain whether these results apply to a nationally representative target population. Objective: To extend inferences about the effects of lung cancer screening strategies from the NLST to a nationally representative target population of NLST-eligible US adults. Design, Setting, and Participants: This comparative effectiveness study included NLST data from US adults at 33 participating centers enrolled between August 2002 and April 2004 with follow-up through 2009 along with National Health Interview Survey (NHIS) cross-sectional household interview survey data from 2010. Eligible participants were adults aged 55 to 74 years, and were current or former smokers with at least 30 pack-years of smoking (former smokers were required to have quit within the last 15 years). Transportability analyses combined baseline covariate, treatment, and outcome data from the NLST with covariate data from the NHIS and reweighted the trial data to the target population. Data were analyzed from March 2020 to May 2023. Interventions: Low-dose CT or chest radiography screening with a screening assessment at baseline, then yearly for 2 more years. Main Outcomes and Measures: For the outcomes of lung-cancer specific and all-cause death, mortality rates, rate differences, and ratios were calculated at a median (25th percentile and 75th percentile) follow-up of 5.5 (5.2-5.9) years for lung cancer-specific mortality and 6.5 (6.1-6.9) years for all-cause mortality. Results: The transportability analysis included 51 274 NLST participants and 685 NHIS participants representing the target population (of approximately 5 700 000 individuals after survey-weighting). Compared with the target population, NLST participants were younger (median [25th percentile and 75th percentile] age, 60 [57 to 65] years vs 63 [58 to 67] years), had fewer comorbidities (eg, heart disease, 6551 of 51 274 [12.8%] vs 1 025 951 of 5 739 532 [17.9%]), and were more educated (bachelor's degree or higher, 16 349 of 51 274 [31.9%] vs 859 812 of 5 739 532 [15.0%]). In the target population, for lung cancer-specific mortality, the estimated relative rate reduction was 18% (95% CI, 1% to 33%) and the estimated absolute rate reduction with low-dose CT vs chest radiography was 71 deaths per 100 000 person-years (95% CI, 4 to 138 deaths per 100 000 person-years); for all-cause mortality the estimated relative rate reduction was 6% (95% CI, -2% to 12%). In the NLST, for lung cancer-specific mortality, the estimated relative rate reduction was 21% (95% CI, 9% to 32%) and the estimated absolute rate reduction was 67 deaths per 100 000 person-years (95% CI, 27 to 106 deaths per 100 000 person-years); for all-cause mortality, the estimated relative rate reduction was 7% (95% CI, 0% to 12%). Conclusions and Relevance: Estimates of the comparative effectiveness of low-dose CT screening compared with chest radiography in a nationally representative target population were similar to those from unweighted NLST analyses, particularly on the relative scale. Increased uncertainty around effect estimates for the target population reflects large differences in the observed characteristics of trial participants and the target population.


Asunto(s)
Cardiopatías , Neoplasias Pulmonares , Adulto , Humanos , Persona de Mediana Edad , Detección Precoz del Cáncer , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/epidemiología , Estudios Transversales , Tomografía Computarizada por Rayos X
16.
JAMA Netw Open ; 6(5): e2315250, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37227725

RESUMEN

Importance: Screening with low-dose computed tomography (CT) has been shown to reduce mortality from lung cancer in randomized clinical trials in which the rate of adherence to follow-up recommendations was over 90%; however, adherence to Lung Computed Tomography Screening Reporting & Data System (Lung-RADS) recommendations has been low in practice. Identifying patients who are at risk of being nonadherent to screening recommendations may enable personalized outreach to improve overall screening adherence. Objective: To identify factors associated with patient nonadherence to Lung-RADS recommendations across multiple screening time points. Design, Setting, and Participants: This cohort study was conducted at a single US academic medical center across 10 geographically distributed sites where lung cancer screening is offered. The study enrolled individuals who underwent low-dose CT screening for lung cancer between July 31, 2013, and November 30, 2021. Exposures: Low-dose CT screening for lung cancer. Main Outcomes and Measures: The main outcome was nonadherence to follow-up recommendations for lung cancer screening, defined as failing to complete a recommended or more invasive follow-up examination (ie, diagnostic dose CT, positron emission tomography-CT, or tissue sampling vs low-dose CT) within 15 months (Lung-RADS score, 1 or 2), 9 months (Lung-RADS score, 3), 5 months (Lung-RADS score, 4A), or 3 months (Lung-RADS score, 4B/X). Multivariable logistic regression was used to identify factors associated with patient nonadherence to baseline Lung-RADS recommendations. A generalized estimating equations model was used to assess whether the pattern of longitudinal Lung-RADS scores was associated with patient nonadherence over time. Results: Among 1979 included patients, 1111 (56.1%) were aged 65 years or older at baseline screening (mean [SD] age, 65.3 [6.6] years), and 1176 (59.4%) were male. The odds of being nonadherent were lower among patients with a baseline Lung-RADS score of 1 or 2 vs 3 (adjusted odds ratio [AOR], 0.35; 95% CI, 0.25-0.50), 4A (AOR, 0.21; 95% CI, 0.13-0.33), or 4B/X, (AOR, 0.10; 95% CI, 0.05-0.19); with a postgraduate vs college degree (AOR, 0.70; 95% CI, 0.53-0.92); with a family history of lung cancer vs no family history (AOR, 0.74; 95% CI, 0.59-0.93); with a high age-adjusted Charlson Comorbidity Index score (≥4) vs a low score (0 or 1) (AOR, 0.67; 95% CI, 0.46-0.98); in the high vs low income category (AOR, 0.79; 95% CI, 0.65-0.98); and referred by physicians from pulmonary or thoracic-related departments vs another department (AOR, 0.56; 95% CI, 0.44-0.73). Among 830 eligible patients who had completed at least 2 screening examinations, the adjusted odds of being nonadherent to Lung-RADS recommendations at the following screening were increased in patients with consecutive Lung-RADS scores of 1 to 2 (AOR, 1.38; 95% CI, 1.12-1.69). Conclusions and Relevance: In this retrospective cohort study, patients with consecutive negative lung cancer screening results were more likely to be nonadherent with follow-up recommendations. These individuals are potential candidates for tailored outreach to improve adherence to recommended annual lung cancer screening.


Asunto(s)
Neoplasias Pulmonares , Humanos , Masculino , Anciano , Femenino , Neoplasias Pulmonares/diagnóstico por imagen , Estudios de Cohortes , Detección Precoz del Cáncer/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
17.
Cancer Res ; 83(19): 3305-3319, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37477508

RESUMEN

A greater understanding of molecular, cellular, and immunological changes during the early stages of lung adenocarcinoma development could improve diagnostic and therapeutic approaches in patients with pulmonary nodules at risk for lung cancer. To elucidate the immunopathogenesis of early lung tumorigenesis, we evaluated surgically resected pulmonary nodules representing the spectrum of early lung adenocarcinoma as well as associated normal lung tissues using single-cell RNA sequencing and validated the results by flow cytometry and multiplex immunofluorescence (MIF). Single-cell transcriptomics revealed a significant decrease in gene expression associated with cytolytic activities of tumor-infiltrating natural killer and natural killer T cells. This was accompanied by a reduction in effector T cells and an increase of CD4+ regulatory T cells (Treg) in subsolid nodules. An independent set of resected pulmonary nodules consisting of both adenocarcinomas and associated premalignant lesions corroborated the early increment of Tregs in premalignant lesions compared with the associated normal lung tissues by MIF. Gene expression analysis indicated that cancer-associated alveolar type 2 cells and fibroblasts may contribute to the deregulation of the extracellular matrix, potentially affecting immune infiltration in subsolid nodules through ligand-receptor interactions. These findings suggest that there is a suppression of immune surveillance across the spectrum of early-stage lung adenocarcinoma. SIGNIFICANCE: Analysis of a spectrum of subsolid pulmonary nodules by single-cell RNA sequencing provides insights into the immune regulation and cell-cell interactions in the tumor microenvironment during early lung tumor development.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Nódulos Pulmonares Múltiples , Humanos , Monitorización Inmunológica , Tomografía Computarizada por Rayos X/métodos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/patología , Adenocarcinoma/genética , Adenocarcinoma/patología , Microambiente Tumoral
18.
Cell Rep Med ; 4(10): 101198, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37716353

RESUMEN

The emerging field of liquid biopsy stands at the forefront of novel diagnostic strategies for cancer and other diseases. Liquid biopsy allows minimally invasive molecular characterization of cancers for diagnosis, patient stratification to therapy, and longitudinal monitoring. Liquid biopsy strategies include detection and monitoring of circulating tumor cells, cell-free DNA, and extracellular vesicles. In this review, we address the current understanding and the role of existing liquid-biopsy-based modalities in cancer diagnostics and monitoring. We specifically focus on the technical and clinical challenges associated with liquid biopsy and biomarker development being addressed by the Liquid Biopsy Consortium, established through the National Cancer Institute. The Liquid Biopsy Consortium has developed new methods/assays and validated existing methods/technologies to capture and characterize tumor-derived circulating cargo, as well as addressed existing challenges and provided recommendations for advancing biomarker assays.


Asunto(s)
Ácidos Nucleicos Libres de Células , Vesículas Extracelulares , Células Neoplásicas Circulantes , Humanos , Biopsia Líquida , Ácidos Nucleicos Libres de Células/genética , Biomarcadores , Células Neoplásicas Circulantes/patología
19.
BMC Med ; 10: 100, 2012 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-22950414

RESUMEN

Pathology and radiology form the core of cancer diagnosis, yet the workflows of both specialties remain ad hoc and occur in separate "silos," with no direct linkage between their case accessioning and/or reporting systems, even when both departments belong to the same host institution. Because both radiologists' and pathologists' data are essential to making correct diagnoses and appropriate patient management and treatment decisions, this isolation of radiology and pathology workflows can be detrimental to the quality and outcomes of patient care. These detrimental effects underscore the need for pathology and radiology workflow integration and for systems that facilitate the synthesis of all data produced by both specialties. With the enormous technological advances currently occurring in both fields, the opportunity has emerged to develop an integrated diagnostic reporting system that supports both specialties and, therefore, improves the overall quality of patient care.


Asunto(s)
Pruebas Diagnósticas de Rutina/métodos , Pruebas Diagnósticas de Rutina/tendencias , Neoplasias/diagnóstico , Patología/métodos , Radiología/métodos , Sistemas de Información en Hospital/organización & administración , Humanos , Patología/tendencias , Radiología/tendencias
20.
AMIA Annu Symp Proc ; 2022: 709-718, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37128415

RESUMEN

Determining factors influencing patient participation in and adherence to cancer screening recommendations is key to successful cancer screening programs. However, the collection of variables necessary to anticipate patient behavior in cancer screening has not been systematically examined. Using lung cancer screening as a representative example, we conducted an exploratory analysis to characterize the current representations of 18 demographic, health-related, and psychosocial variables collected as part of a conceptual model to understand factors for lung cancer screening participation and adherence. Our analysis revealed a lack of standardization in controlled terminologies and common data elements for these variables. For example, only eight (44%) demographic and health-related variables were recorded consistently in the electronic health record. Multiple survey instruments could collect the remaining variables but were highly inconsistent in how variables were represented. This analysis suggests opportunities to establish standardized data formats for psychological, cognitive, social, and environmental variables to improve data collection.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias Pulmonares , Humanos , Recolección de Datos , Participación del Paciente , Demografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA