Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hepatology ; 75(2): 280-296, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34449924

RESUMEN

BACKGROUND AND AIMS: Methionine adenosyltransferase 1A (MAT1A) is responsible for S-adenosylmethionine (SAMe) biosynthesis in the liver. Mice lacking Mat1a have hepatic SAMe depletion and develop NASH and HCC spontaneously. Several kinases are activated in Mat1a knockout (KO) mice livers. However, characterizing the phospho-proteome and determining whether they contribute to liver pathology remain open for study. Our study aimed to provide this knowledge. APPROACH AND RESULTS: We performed phospho-proteomics in Mat1a KO mice livers with and without SAMe treatment to identify SAMe-dependent changes that may contribute to liver pathology. Our studies used Mat1a KO mice at different ages treated with and without SAMe, cell lines, in vitro translation and kinase assays, and human liver specimens. We found that the most striking change was hyperphosphorylation and increased content of La-related protein 1 (LARP1), which, in the unphosphorylated form, negatively regulates translation of 5'-terminal oligopyrimidine (TOP)-containing mRNAs. Consistently, multiple TOP proteins are induced in KO livers. Translation of TOP mRNAs ribosomal protein S3 and ribosomal protein L18 was enhanced by LARP1 overexpression in liver cancer cells. We identified LARP1-T449 as a SAMe-sensitive phospho-site of cyclin-dependent kinase 2 (CDK2). Knocking down CDK2 lowered LARP1 phosphorylation and prevented LARP1-overexpression-mediated increase in translation. LARP1-T449 phosphorylation induced global translation, cell growth, migration, invasion, and expression of oncogenic TOP-ribosomal proteins in HCC cells. LARP1 expression is increased in human NASH and HCC. CONCLUSIONS: Our results reveal a SAMe-sensitive mechanism of LARP1 phosphorylation that may be involved in the progression of NASH to HCC.


Asunto(s)
Autoantígenos/metabolismo , Oligonucleótidos/genética , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/antagonistas & inhibidores , Ribonucleoproteínas/metabolismo , S-Adenosilmetionina/metabolismo , Animales , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/inmunología , Quinasa 2 Dependiente de la Ciclina/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Metionina Adenosiltransferasa/genética , Ratones , Ratones Noqueados , Mutación , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosforilación/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Proteómica , ARN Mensajero/metabolismo , Proteínas Ribosómicas/genética , S-Adenosilmetionina/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Antígeno SS-B
2.
Elife ; 112022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36193675

RESUMEN

Trans-differentiation of hepatic stellate cells (HSCs) to activated state potentiates liver fibrosis through release of extracellular matrix (ECM) components, distorting the liver architecture. Since limited antifibrotics are available, pharmacological intervention targeting activated HSCs may be considered for therapy. A-kinase anchoring protein 12 (AKAP12) is a scaffolding protein that directs protein kinases A/C (PKA/PKC) and cyclins to specific locations spatiotemporally controlling their biological effects. It has been shown that AKAP12's scaffolding functions are altered by phosphorylation. In previously published work, observed an association between AKAP12 phosphorylation and HSC activation. In this work, we demonstrate that AKAP12's scaffolding activity toward the endoplasmic reticulum (ER)-resident collagen chaperone, heat-shock protein 47 (HSP47) is strongly inhibited by AKAP12's site-specific phosphorylation in activated HSCs. CRISPR-directed gene editing of AKAP12's phospho-sites restores its scaffolding toward HSP47, inhibiting HSP47's collagen maturation functions, and HSC activation. AKAP12 phospho-editing dramatically inhibits fibrosis, ER stress response, HSC inflammatory signaling, and liver injury in mice. Our overall findings suggest a pro-fibrogenic role of AKAP12 phosphorylation that may be targeted for therapeutic intervention in liver fibrosis.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Células Estrelladas Hepáticas , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Proteínas de Ciclo Celular , Colágeno/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ciclinas/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Proteínas del Choque Térmico HSP47/genética , Proteínas del Choque Térmico HSP47/metabolismo , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones , Fosforilación , Proteína Quinasa C/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA