Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Microbiol ; 24(1): 250, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978012

RESUMEN

BACKGROUND: ESBL-producing Escherichia coli pose a growing health risk in community and healthcare settings. We investigated the resistome, virulome, mobilome, and genetic relatedness of multidrug-resistant (MDR) E. coli isolates from patients and their environment in a Ghanaian teaching hospital. MATERIALS AND METHODS: Twenty-three MDR ESBL-producing or carbapenem-resistant E. coli isolates from a collection of MDR Gram-negative bacteria (GNB) from patients and environments were selected for genomic analyses. Whole genome sequencing and bioinformatics tools were used to analyze genomic characteristics and phylogeny. RESULTS: The prevalence and incidence of rectal carriage of ESBL E. coli among patients were 13.65% and 11.32% respectively. The ß-lactamase genes, blaTEM-1B (10 isolates) and blaCTX-M-15 (12 isolates) were commonly associated with IncFIB plasmid replicons and co-occurred with aminoglycoside, macrolide, and sulfamethoxazole/trimethoprim resistance. Insertion sequences, transposons, and class I integrons were found with blaCTX-M-15. Carriage and environmental isolates carried multiple virulence genes, with terC being the most prevalent in 21 isolates. Seventeen sequence types (STs) were identified, including a novel ST (ST13846). Phylogenetic analysis grouped the isolates into four main clusters, with one outlier. High genetic relatedness was observed between two carriage isolates of ST940 and between a carriage isolate and an environmental isolate of ST648. Isolates with different STs, collected at different times and locations, also showed genetic similarities. CONCLUSION: We identified ESBL-producing E. coli with diverse genomic characteristics circulating in different hospital directorates. Clonal relatedness was observed among isolates from patients and the environment, as well as between different patients, suggesting transmission within and between sources.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Infecciones por Escherichia coli , Escherichia coli , Hospitales de Enseñanza , Filogenia , beta-Lactamasas , Humanos , Ghana/epidemiología , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Escherichia coli/clasificación , beta-Lactamasas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/epidemiología , Antibacterianos/farmacología , Secuenciación Completa del Genoma , Plásmidos/genética , Pruebas de Sensibilidad Microbiana , Genoma Bacteriano/genética , Genómica , Factores de Virulencia/genética , Masculino , Femenino , Adulto
2.
Molecules ; 28(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36770598

RESUMEN

Despite progress in breast cancer treatment, the survival rate for patients with metastatic breast cancer remains low due to chemotherapeutic agent resistance and the lack of specificity of the current generation of cancer drugs. Our previous findings indicated that the antimicrobial peptide SKACP003 exhibited anticancer properties, particularly against the MCF-7, MDA-MB-231, and MDA-MB-453 breast cancer cell lines. However, the mechanism of SKACP003-induced cancer cell death is unknown. Here, we investigated the molecular mechanism by which SKACP003 inhibits the cell cycle, cell proliferation, and angiogenesis in breast cancer cell lines. The results revealed that all the breast cancer cell lines treated at their IC50 values significantly inhibited the replicative phase of the cell cycle. The SKACP003-induced growth inhibition induced apoptosis, as evidenced by a decrease in BCL-2 and an increase in BAX and caspase gene (Cas-3, Cas-8, and Cas-9) expression. Reduced expression of the ß-Catenin signaling pathway was associated with the SKACP003-induced apoptosis. SKACP003-treated breast cancer cells showed decreased expression of Wnt/ß-Catenin targeting genes such as C-Myc, P68, and COX-2 and significant downregulation of CDK-4 and CDK-6 genes. Furthermore, cytoplasmic ß-catenin protein levels in SKACP003-treated cell lines were significantly lower than in control cell lines. The results of the current study suggest that the newly identified antimicrobial peptide SKACP003 has great potential as a candidate for specifically targeting the ß-catenin and thus significantly reducing the progression and prognosis of breast cancer cell lines.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Femenino , Humanos , Antineoplásicos/farmacología , Apoptosis , beta Catenina/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Células MCF-7 , Vía de Señalización Wnt , Péptidos Antimicrobianos/farmacología
3.
BMC Microbiol ; 20(1): 346, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33183235

RESUMEN

BACKGROUND: Access to safe water for drinking and domestic activities remains a challenge in emerging economies like South Africa, forcing resource-limited communities to use microbiologically polluted river water for personal and household purposes, posing a public health risk. This study quantified bacterial contamination and the potential health hazards that wastewater treatment plant (WWTP) workers and communities may face after exposure to waterborne pathogenic bacteria in a WWTP and its associated surface water, respectively. RESULTS: Escherichia coli (Colilert®-18/ Quanti-Tray® 2000) and enterococci (Enterolert®/ Quanti-Tray® 2000) were quantified and definitively identified by real-time polymerase chain reaction targeting the uidA and tuf genes, respectively. An approximate beta-Poisson dose-response model was used to estimate the probability of infection (Pi) with pathogenic E. coli. Mean E. coli concentration ranged from 2.60E+ 02/100 mL to 4.84E+ 06/100 mL; enterococci ranged from 2.60E+ 02/100 mL to 3.19E+ 06/100 mL across all sampled sites. Of the 580 E. coli isolates obtained from this study, 89.1% were intestinal, and 7.6% were extraintestinal pathogenic E. coli. The 579 enterococci obtained were 50.4% E. faecalis (50.4%), 31.4% E. faecium, 3.5%, E. casseliflavus and 0.7% E. gallinarum. The community health risk stemming from the use of the water for recreational and domestic purposes revealed a greater health risk (Pi) from the ingestion of 1 mL of river water from upstream (range, 55.1-92.9%) than downstream (range, 26.8-65.3%) sites. The occupational risk of infection with pathogenic E. coli for workers resulting from a once-off unintentional consumption of 1 mL of water was 0% (effluent) and 23.8% (raw influent). Multiple weekly exposures of 1 mL over a year could result in a Pi of 1.2 and 100% for the effluent and influent, respectively. CONCLUSION: Our findings reveal that there is a potentially high risk of infection for WWTP workers and communities that use river water upstream and downstream of the investigated WWTP.


Asunto(s)
Aguas Residuales/microbiología , Purificación del Agua/estadística & datos numéricos , Enterococcus/clasificación , Enterococcus/genética , Enterococcus/aislamiento & purificación , Enterococcus/patogenicidad , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Escherichia coli/clasificación , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Humanos , Medición de Riesgo , Ríos/microbiología , Sudáfrica , Purificación del Agua/normas
4.
Microb Ecol ; 72(4): 881-889, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27193001

RESUMEN

Studies on the survival of bacterial enteric pathogens in riverbed sediments have mostly focused on individual organisms. Reports on the competitive survival of these pathogens in riverbed sediments under the same experimental setup are limited. We investigated the survival of Escherichia coli, Salmonella enterica ser. Typhimurium, Vibrio cholerae and Shigella dysenteriae in riverbed sediments of the Apies River. Experiments were performed in flow chambers containing three sediment types and connected to aquarium pumps immersed in river water to maintain continuous water circulation. Each chamber was inoculated with ~107 CFU/mL (final concentration) of each microorganism and kept at 4, 20 and 30 °C. Chambers were sampled on days 0, 1, 2, 7, 14 and 28. At 4 °C, only E. coli and S. typhimurium survived throughout the 28 experimental days. V. cholerae had the shortest survival time at this temperature and was not detected in any of the sediment chambers 24 h after inoculation. S. dysenteriae only survived until day 7. At an increased temperature of 20 °C, only S. dysenteriae was not detected on day 28 of the experiment. At 30 °C, V. cholerae and Salmonella survived longer (28 days) than E. coli (14 days) and S. dysenteriae (4 days). Vibrio cholerae was shown to have the highest T 90 values (32 days) in all sediment types at 20 and 30 °C. We conclude that the sediments of the Apies River present a favourable environment for the survival of indicator and pathogenic bacteria depending on the prevailing temperature.


Asunto(s)
Escherichia coli/aislamiento & purificación , Sedimentos Geológicos/microbiología , Ríos/microbiología , Salmonella typhimurium/aislamiento & purificación , Shigella dysenteriae/aislamiento & purificación , Vibrio cholerae/aislamiento & purificación , Temperatura , Microbiología del Agua , Contaminación del Agua
5.
Environ Monit Assess ; 187(10): 652, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26419380

RESUMEN

This study aimed at investigating the presence of antibiotic-resistant Escherichia coli in river bed sediments of the Apies River, Gauteng, South Africa, in order to better inform health management decisions designed to protect users of the river. Overall, 180 water and sediment samples were collected at 10 sites along the Apies River from January to February 2014. E. coli was enumerated using the Colilert® 18/Quanti-Tray® 2000 (IDEXX). Isolates were purified by streaking on eosin methylene blue agar followed by the indole test. Pure E. coli isolates were tested for resistance to nine antibiotics by the Kirby-Bauer disc diffusion method. Over 98% of the isolates were resistant to at least one of the antibiotics tested. The highest resistance was observed against nitrofurantoin (sediments) and ampicillin (water). Over 80% of all resistant isolates showed multiple antibiotic resistance (resistance to ≥3 antibiotics). The abundance of E. coli in the sediments not only adds to the evidence that sediments are a reservoir for bacteria and possibly other pathogens including antibiotic-resistant bacteria but also suggests that antibiotic-resistant genes could be transferred to pathogens due to the high prevalence of multiple-antibiotic-resistant (MAR) strains of E. coli observed in the sediment. Using untreated water from the Apies River following resuspension for drinking and other household purposes could pose serious health risks for users. Our results suggest that river bed sediments could serve as reservoirs for MAR bacteria including pathogens under different climatic conditions and their analysis could provide information of public health concerns.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Monitoreo del Ambiente/métodos , Escherichia coli/aislamiento & purificación , Sedimentos Geológicos/microbiología , Ríos , Microbiología del Agua , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Humanos , Pruebas de Sensibilidad Microbiana , Prevalencia , Ríos/microbiología , Sudáfrica
6.
Mar Pollut Bull ; 198: 115895, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101061

RESUMEN

Emphasis is always placed on bacterial but not fungal pathogens in marine environments. We analysed the fungal diversity, functional predictions, and toxic metals and metalloids contamination in beach sand from different South African locations. Results revealed a diverse fungal community, with Ascomycota, Rozellomycota, and Basidiomycota being the dominant phyla. Functional predictions highlighted fungal metabolic pathways related to of carbohydrates, amino acids, and lipids, in different beach samples. Elevated concentrations of toxic metals and metalloids were detected in Central and Harbour beach sands, likely due to anthropogenic activities. Correlations among different elements were observed, suggesting complex interactions in the coastal environment. Fungal pathogens like Cladosporium, Fusarium, Aspergillus, and Candida in beach sands raise potential public health risk concerns. Therefore, monitoring fungal diversity (including pathogens) alongside bacterial contamination in beach environments is imperative. The results contribute to understanding fungal community dynamics, functional potential, toxic metal and metalloid contamination, and potential risks associated with beach sand ecosystems.


Asunto(s)
Ascomicetos , Metaloides , Micobioma , Arena , Ecosistema , Microbiología del Agua , Hongos
7.
Sci Total Environ ; 918: 170214, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38278242

RESUMEN

Human viral pathogens, including SARS-CoV-2 continue to attract public and research attention due to their disruption of society, global health, and the economy. Several earlier reviews have investigated the occurrence and fate of SARS-CoV-2 in wastewater, and the potential to use such data in wastewater-based epidemiology. However, comprehensive reviews tracking SARS-CoV-2 and other viral pathogens in the wastewater-water-drinking water continuum and the associated risk assessment are still lacking. Therefore, to address this gap, the present paper makes the following contributions: (1) critically examines the early empirical results to highlight the occurrence and stability of SARS-CoV-2 in the wastewater-source water-drinking water continuum, (2) discusses the anthropogenic and hydro(geo)logical processes controlling the circulation of SARS-CoV-2 in the wastewater-source water-drinking water continuum, (3) discusses the risky behaviour, drivers and high-risk settings in the wastewater-source water-drinking water continuum, (4) uses the available empirical data on SARS-CoV-2 occurrence in the wastewater-source water-drinking water continuum to discuss human health risks from multiple exposure pathways, gendered aspects of SARS-CoV-2 transmission via shared on-site sanitation systems, and (5) develops and risk mitigation strategy based on the available empirical evidence and quantitative human risk assessment data. Finally, it presents a comprehensive research agenda on SARS-CoV-2/COVID-19 to guide the mitigation of future similar outbreaks in low-income settings.


Asunto(s)
COVID-19 , Agua Potable , Humanos , Aguas Residuales , COVID-19/epidemiología , SARS-CoV-2 , Brotes de Enfermedades
8.
Sci Total Environ ; 856(Pt 1): 159098, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36181797

RESUMEN

The World Health Organization reported that COVID-19 cases reached 611,421,786 globally by September 23, 2022. Six months after the first reported case, the disease had spread rapidly, reaching pandemic status, leading to numerous preventive measures to curb the spread, including a complete shutdown of many activities worldwide. Such restrictions affected services like waste management, resulting in waste accumulation in many communities and increased water pollution. Therefore, the current study investigated if lockdown impacted surface water microbial quality within an urban water catchment in South Africa. Using quantitative microbial risk assessment, the study further assessed changes in the probability of infection (Pi) with gastrointestinal illnesses from exposure to polluted water in the catchment. Escherichia coli data for 2019, 2020 and 2021 - pre-COVID, lockdown, and post-lockdown periods, respectively - were collected from the area's wastewater treatment management authorities. The Pi was determined using a beta-Poisson model. Mean overall E. coli counts ranged from 2.93 ± 0.16 to 5.30 ± 1.07 Log10 MPN/100 mL. There was an overall statistically significant increase in microbial counts from 2019 to 2021. However, this difference was only accounted for between 2019 and 2021 (p = 0.008); the increase was insignificant between 2019 and 2020, and 2020 and 2021. The Pi revealed a similar trend for incidental ingestion of 100 mL and 1 mL of polluted water. No statistically significant difference was observed between the years based on multiple exposures. Although the overall microbial load and Pi estimated within the catchment exceeded the local and international limits recommended for safe use by humans, especially for drinking and recreation, these were not significantly affected by the COVID-19 restrictions. Nevertheless, these could still represent a health hazard to immunocompromised individuals using such water for personal and household hygiene, especially in informal settlements without access to water and sanitation services.


Asunto(s)
COVID-19 , Enfermedades Transmitidas por el Agua , Humanos , COVID-19/epidemiología , Agua , Escherichia coli , Control de Enfermedades Transmisibles , Medición de Riesgo
9.
Antibiotics (Basel) ; 12(5)2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37237708

RESUMEN

Antimicrobial resistance (AMR) is a growing global public health threat. Furthermore, wastewater is increasingly recognized as a significant environmental reservoir for AMR. Wastewater is a complex mixture of organic and inorganic compounds, including antibiotics and other antimicrobial agents, discharged from hospitals, pharmaceutical industries, and households. Therefore, wastewater treatment plants (WWTPs) are critical components of urban infrastructure that play a vital role in protecting public health and the environment. However, they can also be a source of AMR. WWTPs serve as a point of convergence for antibiotics and resistant bacteria from various sources, creating an environment that favours the selection and spread of AMR. The effluent from WWTPs can also contaminate surface freshwater and groundwater resources, which can subsequently spread resistant bacteria to the wider environment. In Africa, the prevalence of AMR in wastewater is of particular concern due to the inadequate sanitation and wastewater treatment facilities, coupled with the overuse and misuse of antibiotics in healthcare and agriculture. Therefore, the present review evaluated studies that reported on wastewater in Africa between 2012 and 2022 to identify knowledge gaps and propose future perspectives, informing the use of wastewater-based epidemiology as a proxy for determining the resistome circulating within the continent. The study found that although wastewater resistome studies have increased over time in Africa, this is not the case in every country, with most studies conducted in South Africa. Furthermore, the study identified, among others, methodology and reporting gaps, driven by a lack of skills. Finally, the review suggests solutions including standardisation of protocols in wastewater resistome works and an urgent need to build genomic skills within the continent to handle the big data generated from these studies.

10.
Sci Total Environ ; 877: 162951, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36948313

RESUMEN

Hydrocarbon footprints in the environment, via biosynthesis, natural seepage, anthropogenic activities and accidents, affect the ecosystem and induce a shift in the healthy biogeochemical equilibrium that drives needed ecological services. In addition, these imbalances cause human diseases and reduce animal and microorganism diversity. Microbial bioremediation, which capitalizes on functional genes, is a sustainable mitigation option for cleaning hydrocarbon-impacted environments. This review focuses on the bacterial alkB functional gene, which codes for a non-heme di­iron monooxygenase (AlkB) with a di­iron active site that catalyzes C8-C16 medium-chain alkane metabolism. These enzymes are ubiquitous and share common attributes such as being controlled by global transcriptional regulators, being a component of most super hydrocarbon degraders, and their distributions linked to horizontal gene transfer (HGT) events. The phylogenetic approach used in the HGT detection suggests that AlkB tree topology clusters bacteria functionally and that a preferential gradient dictates gene distribution. The alkB gene also acts as a biomarker for bioremediation, although it is found in pristine environments and absent in some hydrocarbon degraders. For instance, a quantitative molecular method has failed to link alkB copy number to contamination concentration levels. This limitation may be due to AlkB homologues, which have other functions besides n-alkane assimilation. Thus, this review, which focuses on Pseudomonas putida GPo1 alkB, shows that AlkB proteins are diverse but have some unifying trends around hydrocarbon-degrading bacteria; it is erroneous to rely on alkB detection alone as a monitoring parameter for hydrocarbon degradation, alkB gene distribution are preferentially distributed among bacteria, and the plausible explanation for AlkB affiliation to broad-spectrum metabolism of hydrocarbons in super-degraders hitherto reported. Overall, this review provides a broad perspective of the ecology of alkB-carrying bacteria and their directed biodegradation pathways.


Asunto(s)
Alcanos , Pseudomonas putida , Animales , Humanos , Alcanos/metabolismo , Biodegradación Ambiental , Ecosistema , Hidrocarburos/metabolismo , Hierro , Filogenia , Pseudomonas putida/metabolismo , Genes Bacterianos
11.
Sci Total Environ ; 903: 166145, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37579801

RESUMEN

The deep ocean is a rich reservoir of unique organisms with great potential for bioprospecting, ecosystem services, and the discovery of novel materials. These organisms thrive in harsh environments characterized by high hydrostatic pressure, low temperature, and limited nutrients. Hydrothermal vents and cold seeps, prominent features of the deep ocean, provide a habitat for microorganisms involved in the production and filtration of methane, a potent greenhouse gas. Methanotrophs, comprising archaea and bacteria, play a crucial role in these processes. This review examines the intricate relationship between the roles, responses, and niche specialization of methanotrophs in the deep ocean ecosystem. Our findings reveal that different types of methanotrophs dominate specific zones depending on prevailing conditions. Type I methanotrophs thrive in oxygen-rich zones, while Type II methanotrophs display adaptability to diverse conditions. Verrumicrobiota and NC10 flourish in hypoxic and extreme environments. In addition to their essential role in methane regulation, methanotrophs contribute to various ecosystem functions. They participate in the degradation of foreign compounds and play a crucial role in cycling biogeochemical elements like metals, sulfur, and nitrogen. Methanotrophs also serve as a significant energy source for the oceanic food chain and drive chemosynthesis in the deep ocean. Moreover, their presence offers promising prospects for biotechnological applications, including the production of valuable compounds such as polyhydroxyalkanoates, methanobactin, exopolysaccharides, ecotines, methanol, putrescine, and biofuels. In conclusion, this review highlights the multifaceted roles of methanotrophs in the deep ocean ecosystem, underscoring their ecological significance and their potential for advancements in biotechnology. A comprehensive understanding of their niche specialization and responses will contribute to harnessing their full potential in various domains.

12.
Antibiotics (Basel) ; 12(8)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37627765

RESUMEN

Diarrheagenic Escherichia coli (DEC) pathotypes are the leading cause of mortality and morbidity in South Asia and sub-Saharan Africa. Daily interaction between people contributes to the spreading of Escherichia coli (E. coli), and fomites are a common source of community-acquired bacterial infections. The spread of bacterial infectious diseases from inanimate objects to the surrounding environment and humans is a serious problem for public health, safety, and development. This study aimed to determine the prevalence and antibiotic resistance of diarrheagenic E. coli found in toilets and kitchen cloths in the Vhembe district, South Africa. One hundred and five samples were cultured to isolate E. coli: thirty-five samples were kitchen cloths and seventy-five samples were toilet swabs. Biochemical tests, API20E, and the VITEK®-2 automated system were used to identify E. coli. Pathotypes of E. coli were characterised using Multiplex Polymerase Chain Reaction (mPCR). Nine amplified gene fragments were sequenced using partial sequencing. A total of eight antibiotics were used for the antibiotic susceptibility testing of E. coli isolates using the Kirby-Bauer disc diffusion method. Among the collected samples, 47% were positive for E. coli. DEC prevalence was high (81%), with ETEC (51%) harboring lt and st genes being the most dominant pathotype found on both kitchen cloths and toilet surfaces. Diarrheagenic E. coli pathotypes were more prevalent in the kitchen cloths (79.6%) compared with the toilet surfaces. Notably, hybrid pathotypes were detected in 44.2% of the isolates, showcasing the co-existence of multiple pathotypes within a single E. coli strain. The antibiotic resistance testing of E. coli isolates from kitchen cloths and toilets showed high resistance to ampicillin (100%) and amoxicillin (100%). Only E. coli isolates with hybrid pathotypes were found to be resistant to more than three antibiotics. This study emphasizes the significance of fomites as potential sources of bacterial contamination in rural settings. The results highlight the importance of implementing proactive measures to improve hygiene practices and antibiotic stewardship in these communities. These measures are essential for reducing the impact of DEC infections and antibiotic resistance, ultimately safeguarding public health.

13.
bioRxiv ; 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37398478

RESUMEN

Antimicrobial resistance (AMR) is a global health challenge and there is increasing recognition of the role of the environment, particularly wastewater, in the development and spread of AMR. Although trace metals are common contaminants in wastewater, the quantitative effects of trace metals on AMR in wastewater settings remain understudied. We experimentally determined the interactions between common antibiotic residues and metal ions found in wastewater and investigated their effects on the development of antibiotic resistance in Escherichia coli over time. These data were then used to expand on a previously developed computational model of antibiotic resistance development in continuous flow settings to incorporate the effects of trace metals acting in combination with multiple antibiotic residues. We found that the common metal ions, copper and iron, interact with both ciprofloxacin and doxycycline at wastewater relevant concentrations. This can significantly affect resistance development due to antibiotic chelation of the metal ions causing a reduction in the antibiotics' bioactivity. Furthermore, modeling the effect of these interactions in wastewater systems showed the potential for metal ions in wastewater to significantly increase the development of antibiotic resistant E. coli populations. These results demonstrate the need to quantitatively understand the effects of trace metal-antibiotic interactions on AMR development in wastewater.

14.
J Infect Public Health ; 16 Suppl 1: 2-8, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37953109

RESUMEN

BACKGROUND: Patients already colonized with multidrug-resistant (MDR) Gram-negative bacteria (GNB) on admission to critical care units may be an important source of transmission of these bacteria in hospitals. We sought to determine the prevalence of MDR GNB colonization in patients, staff and the ward environment and to assess the risk factors for colonization of patients in wards. METHODS: The study was conducted from April 2021 to July 2021 in a teaching hospital in Ghana. MDR GNB were isolated from rectal, and hand swabs were taken from patients on admission and after 48 h. Swabs from HCW's hands and the ward environment were also taken. Risk factors for colonization with MDR GNB were assessed using univariate and multivariate analysis. RESULTS: MDR GNB rectal colonization rate among patients was 50.62% on admission and 44.44% after 48 h. MDR GNB were isolated from 6 (5.26%) and 24 (11.54%) of HCW's hand swabs and environmental swabs, respectively. Previous hospitalization (p-value = 0.021, OR, 95% CI= 7.170 (1.345-38.214) was significantly associated with colonization by MDR GNB after 48 h of admission. Age (21-30 years) (p-value = 0.022, OR, 95% CI = 0.103 (0.015-0.716) was significantly identified as a protective factor associated with a reduced risk of rectal MDR GNB colonization. CONCLUSION: The high colonization of MDR GNB in patients, the carriage of MDR GNB on HCW's hands, and the contamination of hospital environments highlights the need for patient screening and stringent infection prevention and control practices to prevent the spread of MDR GNB in hospitals.


Asunto(s)
Bacterias Gramnegativas , Infecciones por Bacterias Gramnegativas , Humanos , Adulto Joven , Adulto , Infecciones por Bacterias Gramnegativas/microbiología , Ghana/epidemiología , Farmacorresistencia Bacteriana Múltiple , Factores de Riesgo , Hospitales de Enseñanza , Personal de Salud , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
15.
Microorganisms ; 12(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276176

RESUMEN

This study investigated the antibacterial, resistance modulation, biofilm inhibition, and efflux pump inhibition potentials of Loeseneriella africana stem extract and its constituents. The antimicrobial activity was investigated by the high-throughput spot culture growth inhibition (HT-SPOTi) and broth microdilution assays. The resistance modulation activity was investigated using the anti-biofilm formation and efflux pump inhibition assays. Purification of the extract was carried out by chromatographic methods, and the isolated compounds were characterized based on nuclear magnetic resonance, Fourier transform infrared and mass spectrometry spectral data and comparison with published literature. The whole extract, methanol, ethyl acetate, and pet-ether fractions of L. africana all showed antibacterial activity against the test bacteria with MICs ranging from 62.5 to 500.0 µg/mL The whole extract demonstrated resistance modulation effect through strong biofilm inhibition and efflux pump inhibition activities against S. aureus ATCC 25923, E. coli ATCC 25922 and P. aeruginosa ATCC 27853. Chromatographic fractionation of the ethyl acetate fraction resulted in the isolation of a triterpenoid (4S,4αS,6αR,6ßS,8αS,12αS,12ßR,14αS,14ßR)-4,4α,6ß,8α,11,11,12ß,14α-Octamethyloctadecahydropicene-1,3(2H,4H)-dione) and a phytosterol (ß-sitosterol). These compounds showed antibacterial activity against susceptible bacteria at a MIC range of 31-125 µg/mL and potentiated the antibacterial activity of amoxicillin (at » MIC of compounds) against E. coli and P. aeruginosa with modulation factors of 32 and 10, respectively. These compounds also demonstrated good anti-biofilm formation effect at a concentration range of 3-100 µg/mL, and bacterial efflux pump inhibition activity at ½ MIC and » MIC against E. coli and P. aeruginosa. Loeseneriella africana stem bark extracts and constituents elicit considerable antibacterial, resistance modulation, and biofilm and efflux pump inhibition activities. The results justify the indigenous uses of L. africana for managing microbial infections.

16.
Antibiotics (Basel) ; 12(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36671228

RESUMEN

Antibiotics were once considered the magic bullet for all human infections. However, their success was short-lived, and today, microorganisms have become resistant to almost all known antimicrobials. The most recent decade of the 20th and the beginning of the 21st century have witnessed the emergence and spread of antibiotic resistance (ABR) in different pathogenic microorganisms worldwide. Therefore, this narrative review examined the history of antibiotics and the ecological roles of antibiotics, and their resistance. The evolution of bacterial antibiotic resistance in different environments, including aquatic and terrestrial ecosystems, and modern tools used for the identification were addressed. Finally, the review addressed the ecotoxicological impact of antibiotic-resistant bacteria and public health concerns and concluded with possible strategies for addressing the ABR challenge. The information provided in this review will enhance our understanding of ABR and its implications for human, animal, and environmental health. Understanding the environmental dimension will also strengthen the need to prevent pollution as the factors influencing ABR in this setting are more than just antibiotics but involve others like heavy metals and biocides, usually not considered when studying ABR.

17.
Sci Total Environ ; 806(Pt 3): 150641, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34606866

RESUMEN

We, (1) studied carbapenem-resistant Enterobacterales (CRE) in the environment, humans, and animals, within the same geographical area and, (2) delineated the isolates' resistome, mobilome, virulome, and phylogeny. Following ethical approval, 587 samples (humans = 230, pigs = 345, and water = 12) were collected and cultured on CRE selective media. Confirmatory identification and antibiotic susceptibility testing were performed using the VITEK 2 automated platform. The resistomes, virulomes, mobilomes, and phylogenies were ascertained by whole genome sequencing. Nineteen (3.2%), i.e., 15/19 humans and 4/19 environmental, but no pig, CRE were obtained. CREs included Klebsiella pneumoniae 9/19 (47%), Enterobacter hormaechei 6/19 (32%), Klebsiella quasipneumoniae 2/19 (11%), a novel ST498 Citrobacter freundii 1/19 (5%) and Serratia marcescens 1/19 (5%). Eleven isolates were extensively drug-resistant; eight were multidrug-resistant. Sixteen CRE harbored the blaOXA-181, blaOXA-48, blaOXA-484, blaNDM-1, and blaGES-5 genes. Multiple species/clones carried blaOXA-48 and blaNDM-1 carbapenemase-encoding genes with respective mobile genetic elements (MGEs). The IncFIB(K) plasmid replicon was found in most human K. pneumoniae strains (7/9) and all environmental K. quasipneumoniae isolates; most K. pneumoniae produced OXA-181 (5/9). The (Col440I) plasmid replicon, identified in 11 (26.82%) isolates, mainly E. hormaechei (n = 6), predominated both sectors. Most ß-lactamase-encoding genes were associated with class 1 integrons IntI1, insertion sequences (IS) (IS91, IS5075, IS30, IS3000, IS3, IS19, ISKpn19, IS5075) and transposons (Tn3). The IncL/M(pMU407) and IncL/M(pOXA48) plasmid replicons were found exclusively in K. pneumoniae; all but one of these strains produced OXA-181. Also, the Klebsiella spp. harbored 80 virulence genes. Phylogenomic clustered identified isolates with other carbapenemase-producing K. pneumoniae, E. hormaechei, S. marcescens, and C. freundii from different South African sources (animals, environment, and humans). We delineated the resistome, mobilome, virulome, and phylogeny of carbapenemase-producing Enterobacterales in humans and environment, highlighting antibiotic resistance genes propagation via MGEs across sectors, emphasizing a One Health approach to AMR.


Asunto(s)
Infecciones por Klebsiella , Salud Única , Animales , Antibacterianos , Proteínas Bacterianas/genética , Humanos , Integrones , Infecciones por Klebsiella/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Porcinos , beta-Lactamasas/genética
18.
Genes (Basel) ; 12(7)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206235

RESUMEN

The study investigated carbapenemase-producing Klebsiella pneumoniae (CPKP) isolates of patients in an intensive care unit (ICU) in a public hospital in the KwaZulu-Natal province, South Africa using whole-genome sequencing (WGS). Ninety-seven rectal swabs, collected from all consenting adult patients (n = 31) on days 1, 3, and 7 and then weekly, were screened for carbapenemase-production using Chrome-ID selective media. Antibiotic susceptibility was determined for the fourteen positive CPKP isolates obtained using the VITEK 2 automated system. All isolates (100%) were resistant to ertapenem and meropenem, and 71.4% (n = 10) were resistant to imipenem. All CPKP isolates were subjected to ERIC/PCR, and a sub-sample of isolates was selected for WGS based on their antibiograms and clonality. All sequenced isolates harbored the blaOXA-181 carbapenemase (100%) and co-carried other ß-lactamase genes such as blaOXA-1, blaCTX-M-15, blaTEM-1B, and blaSHV-1. IncF, IncX3, and Col plasmid replicons groups and class I integrons (ln191 and ln27) were detected. All isolates belonged to the same sequence type ST307 and capsular serotypes (K102, O2v2). All the isolates carried the same virulence repertoire, reflecting the epidemiological relationship between isolates. blaOXA-181 was located on a multi-replicon plasmid similar to that of E. coli p010_B-OXA181, and isolates were aligned with several South African and international clades, demonstrating horizontal and vertical transboundary distribution. The findings suggest that blaOXA-181 producing K. pneumoniae is endemic in this ICU, colonizing the patients. CRE screening and enhanced infection prevention and control measures are urgently required.


Asunto(s)
Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Klebsiella/tratamiento farmacológico , Klebsiella pneumoniae/genética , beta-Lactamasas/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Genoma Bacteriano/genética , Humanos , Unidades de Cuidados Intensivos , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/patología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/patogenicidad , Recto/microbiología , Sudáfrica/epidemiología , Secuenciación Completa del Genoma
19.
Microorganisms ; 9(5)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919134

RESUMEN

The current study investigated the impact of chicken litter application on the abundance of multidrug-resistant Enterococcus spp. in agricultural soil. Soil samples were collected from five different strategic places on a sugarcane farm before and after manure application for four months. Chicken litter samples were also collected. Enterococci were enumerated using the Enterolert®/Quanti-Tray 2000® system and confirm and differentiated into species using real-time PCR. The antibiotic susceptibility profile of the isolates was determined using the disk diffusion method following the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. The overall mean bacterial count was significantly higher (p < 0.05) in manure-amended soil (3.87 × 107 MPN/g) than unamended soil (2.89 × 107 MPN/g). Eight hundred and thirty-five enterococci (680 from soil and 155 from litter) were isolated, with E. casseliflavus being the most prevalent species (469; 56.2%) and E. gallinarum being the least (16; 1.2%). Approximately 56% of all the isolates were resistant to at least one antibiotic tested, with the highest resistance observed against tetracycline (33%) and the lowest against chloramphenicol (0.1%); 17% of E. faecium were resistant to quinupristin-dalfopristin. Additionally, 27.9% (130/466) of the isolates were multidrug-resistant, with litter-amended soil harbouring more multidrug-resistant (MDR) isolates (67.7%; 88/130) than unamended soil (10.0%; 13/130). All isolates were susceptible to tigecycline, linezolid and gentamicin. About 7% of the isolates had a multiple antimicrobial resistance index > 0.2, indicative of high antibiotic exposure. Although organic fertilizers are regarded as eco-friendly compared to chemical fertilizers for improving soil fertility, the application of untreated animal manure could promote the accumulation of antibiotics and their residues and antibiotic-resistant bacteria in the soil, creating an environmental reservoir of antimicrobial resistance, with potential human and environmental health risks.

20.
Microb Drug Resist ; 27(7): 904-918, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33512279

RESUMEN

We assessed the prevalence, distribution, and antibiotic resistance patterns of Escherichia coli and Enterococcus spp. isolated from raw and treated wastewater of a major wastewater treatment plant (WWTP) in KwaZulu-Natal, South Africa and the receiving river water upstream and downstream from the WWTP discharge point. Escherichia coli and enterococci were isolated and counted using the Colilert®-18 Quanti-Tray® 2000 and Enterolert®-18 Quanti-Tray 2000 systems, respectively. A total of 580 quantitative PCR-confirmed E. coli and 579 enterococci were randomly chosen from positive samples and tested for in vitro antibiotic susceptibility using the disk diffusion assay against 20 and 16 antibiotics, respectively. The removal success of the bacterial species through the treatment procedure at the WWTP was expressed as log removal values (LRVs). Most E. coli were susceptible to meropenem (94.8%) and piperacillin-tazobactam (92.9%), with most Enterococcus susceptible to ampicillin (97.8%) and vancomycin (96.7%). In total, 376 (64.8%) E. coli and 468 (80.8%) Enterococcus isolates showed multidrug resistance (MDR). A total of 42.4% (246/580) E. coli and 65.1% (377/579) enterococci isolates had multiple antibiotic resistance indices >0.2. The LRV for E. coli ranged from 2.97 to 3.99, and for enterococci the range was observed from 1.83 to 3.98. A high proportion of MDR E. coli and enterococci were present at all sampled sites, indicating insufficient removal during wastewater treatment. There is a need to appraise the public health risks associated with bacterial contamination of environmental waters arising from such WWTPs to protect the health of users of the receiving water bodies.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Enterococcus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Aguas Residuales/microbiología , Enterococcus/aislamiento & purificación , Escherichia coli/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Reacción en Cadena en Tiempo Real de la Polimerasa , Sudáfrica/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA