Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
RSC Adv ; 13(47): 33080-33095, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37954422

RESUMEN

Breast cancer is a global health concern, with increasing disease burden and disparities in access to healthcare. Late diagnosis and limited treatment options in underserved areas contribute to poor outcomes. In response to this challenge, we developed a novel family of 2-substituted-quinoxaline analogues, combining coumarin and quinoxaline scaffolds known for their anticancer properties. Through a versatile synthetic approach, we designed, synthesized, and characterized a set of 2-substituted quinoxaline derivatives. The antiproliferative activity of the synthesized compounds was assessed toward the MCF-7 breast cancer cells. Our investigations showed that the synthesized compounds exhibit considerable antiproliferative activity toward MCF-7 cells. Notably, compound 3b, among examined compounds, displayed a superior inhibitory effect (IC50 = 1.85 ± 0.11 µM) toward the growth of MCF-7 cells compared to the conventional anticancer drug staurosporine (IC50 = 6.77 ± 0.41 µM) and showed minimal impact on normal cells (MCF-10A cell lines, IC50 = 33.7 ± 2.04 µM). Mechanistic studies revealed that compound 3b induced cell cycle arrest at the G1 transition and triggered apoptosis in MCF-7 cells, as evidenced by increasing the percentage of cells arrested in the G2/M and pre-G1 phases utilizing flow cytometric analysis and Annexin V-FITC/PI analysis. Moreover, compound 3b was found to substantially suppress topoisomerase enzyme activity in MCF-7 cells. Molecular modeling studies further supported the potential of compound 3b as a therapeutic candidate by demonstrating significant binding affinity to the active sites of both topoisomerase II and EGFR proteins. Taken together, the presented 2-substituted-quinoxaline analogues, especially compound 3b, show promise as potential candidates for the development of effective anti-breast cancer drugs.

2.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34577556

RESUMEN

A new series of 2,4-disubstituted benzo[g]quinoxaline molecules have been synthesized, using naphthalene-2,3-diamine and 1,4-dibromonaphthalene-2,3-diamine as the key starting materials. The structures of the new compounds were confirmed by spectral data along with elemental microanalyses. The cytotoxic activity of all synthesized benzo[g]quinoxaline derivatives was assessed in vitro against the breast MCF-7 cancer cell line. The tested molecules revealed good cytotoxicity toward the breast MCF-7 cancer cell line, especially compound 3. The results of topoisomerase IIß inhibition assay revealed that compound 3 exhibits potent inhibitory activity in submicromolar concentration. Additionally, compound 3 was found to cause pre-G1 apoptosis, and slightly increase the cell population at G1 and S phases of the cell cycle profile in MCF-7 cells. Finally, compound 3 induces apoptosis via Bax activation and downregulation of Bcl2, as revealed by ELISA assay.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA