Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
SAR QSAR Environ Res ; 33(3): 193-214, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35243936

RESUMEN

Some novel substituted thiazolylhydrazine derivatives were designed, synthesized and their inhibitory effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes and antioxidant activities were investigated. The structures of the synthesized compounds were determined using different spectroscopic techniques such as 1H-NMR, 13C-NMR, and HRMS. According to the enzyme inhibition results, the synthesized compounds showed selectivity against BuChE enzyme inhibition. Compounds 5e, 5g, 5i and 5j displayed significant BuChE inhibition potencies. Among them, compound 5i was found to be the most effective derivative with an IC50 value of 56.01 ± 0.054 µM. In addition, their antioxidant properties were evaluated in vitro through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. For compounds 5e, 5g, 5i and 5j in silico molecular docking and 100 ns molecular dynamics simulations studies against the BuChE enzyme were performed to determine possible protein-ligand interactions and stability. DFT-D3 study was performed to stabilize of compounds 5e, 5g, 5i and 5j both in gas and solvent medium and investigated their electronic properties. Of all geometries, that of DMSO is the lowest one.


Asunto(s)
Acetilcolinesterasa , Enfermedad de Alzheimer , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Humanos , Hidrazonas/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad Cuantitativa , Relación Estructura-Actividad
2.
SAR QSAR Environ Res ; 33(11): 899-914, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36420624

RESUMEN

A series of some new benzimidazole-1,3,4-thiadiazoles was synthesized. The structures of target substances were confirmed by using 1H-NMR and 13С-NMR spectroscopy, mass spectrometry and elemental analysis. The synthesized compounds were evaluated for antimicrobial activity against six bacterial strains namely Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 13883), Pseudomonas aeruginosa (ATCC 27853), Enterococcus faecalis (ATCC 2942), Bacillus subtilis (ATCC 6633), Staphylococcus aureus (ATCC 29213)and four fungal strains namely Candida albicans (ATCC 24433), Candida krusei (ATCC 6258), Candida parapsilosis (ATCC 22019) and Candida glabrata (ATCC 9). Antimicrobial data revealed that compounds 4f and 4i with MIC of < 0.97 µg/mL were found to be most effective against E. coli. Among the studied molecules, compounds 4f and 4i showed the best antifungal activity with MIC value of 1.95 µg/mL. Additionally, docking studies were performed towards the most promising compounds 4f and 4i, in the active site of DNA gyrase revealing strong interactions. A molecular dynamics (MD) simulation analysis was also used to investigate the dynamic nature, binding interaction, and protein-ligand stability.


Asunto(s)
Antiinfecciosos , Tiadiazoles , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Escherichia coli , Relación Estructura-Actividad Cuantitativa , Antiinfecciosos/farmacología , Antibacterianos , Tiadiazoles/farmacología , Bencimidazoles/farmacología , Candida albicans
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA