Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Chemistry ; 30(2): e202202760, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37955851

RESUMEN

The crystal structures of 4 ligand-rotational isomers of Au25 (PET)18 are presented. Two new ligand-rotational isomers are revealed, and two higher-quality structures (allowing complete solution of the ligand shell) of previously solved Au25 (PET)18 clusters are also presented. One of the structures lacks an inversion center, making it the first chiral Au25 (SR)18 structure solved. These structures combined with previously published Au25 (SR)18 structures enable an analysis of the empirical ligand conformation landscape for Au25 (SR)18 clusters. This analysis shows that the dihedral angles within the PET ligand are restricted to certain observable values, and also that the dihedral angle values are interdependent, in a manner reminiscent of biomolecule dihedral angles such as those in proteins and DNA. The influence of ligand conformational isomerism on optical and electronic properties was calculated, revealing that the ligand conformations affect the nanocluster absorption spectrum, which potentially provides a way to distinguish between isomers at low temperature.

2.
Small ; 17(27): e2004078, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33174675

RESUMEN

The synthesis and characterization of RhAu24 (PET)18 (PET = 2-phenylethanethiol) is described. The cluster is cosynthesized with Au25 (PET)18 and rhodium thiolates in a coreduction of RhCl3 , HAuCl4 , and PET. Rapid decomposition of RhAu24 (PET)18 occurs when purified from the other reaction products, precluding the study of isolated cluster. Mixtures containing RhAu24 (PET)18 , Au25 (PET)18 , and rhodium thiolates are therefore characterized. Mass spectrometry, X-ray photoelectron spectroscopy, and chromatography methods suggest a combination of charge-charge and metallophilic interactions among Au25 (PET)181- , rhodium thiolates and RhAu24 (PET)18 resulting in stabilization of RhAu24 (PET)18 . The charge of RhAu24 (PET)18 is assigned as 1+ on the basis of its stoichiometric 1:1 presence with anionic Au25 (PET)18 , and its stability is contextualized within the superatom electron counting rules. This analysis concludes that the Rh atom absorbs one superatomic electron to close its d-shell, giving RhAu24 (PET)181+ a superatomic electron configuration of 1S2 1P4 . Overall, an updated framework for rationalizing open d-shell heterometal dopant electronics in thiolated gold nanoclusters emerges.


Asunto(s)
Oro , Tomografía de Emisión de Positrones
3.
Inorg Chem ; 59(6): 3509-3512, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32090558

RESUMEN

Gold nanoclusters show distinctive magnetic properties and electronic structure. Nanoclusters of sufficiently small size restructure geometrically to stabilize electronically (e.g., a Jahn-Teller effect), whereas geometric distortion may not be possible in larger nanoclusters. In this work, the charge-state-dependent magnetism of the Au102(SPh)441-/0/1+/2+ nanocluster is investigated through Evans method NMR measurements. The 2+ charge state is shown as paramagnetic. This suggests that the nanocluster does not distort geometrically to pair electrons. Because the nanocluster lies within the transition range of molecule-like to bulk-like properties, this suggests that the geometric stabilization that becomes important in larger "magic number clusters" may be resistant to electronically driven distortions observed in smaller nanoclusters.

4.
J Am Chem Soc ; 141(1): 309-314, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30532966

RESUMEN

Ligand exchange is a fundamental reaction of metal nanoparticles. Multiple symmetry and kinetic exchange environments are observed for thiolate protected gold nanoparticles, but the correlation between these is unclear. Structural study of ligand exchange on chalcogenide passivated gold clusters has so-far revealed the locations of 10% or fewer of incoming ligands. In a set of 13 crystal structures, we reveal the locations of up to 17 ligands of the 18 ligands in thiolate for selenolate exchanged Au25(SeR)18- x(SR) x clusters. Overall, we see a distinct preference for the locations of thiolate and selenolate ligands that emerges over time. This most-comprehensive to-date structural study of ligand exchange on gold clusters evidences a structural basis for exchange of solvated ligands, exchange of ligands between clusters, and a net reaction that amounts to translation of ligands on the cluster surface.

5.
J Chem Phys ; 150(10): 101102, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30876360

RESUMEN

Electronic spin-state dynamics were studied for a series of Au25(SC8H9)18 q and Au24Pd(SC8H9)18 monolayer-protected clusters (MPCs) prepared in a series of oxidation states, q, including q = -1, 0, +1. These clusters were chosen for study because Au25(SC8H9)18 -1 is a closed-shell superatomic cluster, but Au25(SC8H9)18 0 is an open-shell (7-electron) system; Au25(SC8H9)18 +1 and PdAu24(SC8H9)18 0 are isoelectronic (6-electron) closed-shell systems. Carrier dynamics for electronic fine structure spin states were isolated using femtosecond time-resolved circularly polarized transient-absorption spectroscopy (fs-CPTA). Excitation energies of 1.82 eV and 1.97 eV were chosen for these measurements on Au25(SC8H9)18 0 in order to achieve resonance matching with electronic fine structure transitions within the superatomic P- and D-orbital manifolds; 1.82-eV excited an unpaired Pz electron to D states, whereas 1.97-eV was resonant with transitions between filled Px and Py subshells and higher-energy D orbitals. fs-CPTA measurements revealed multiple spin-polarized transient signals for neutral (open shell) Au25(SC8H9)18, following 1.82-eV excitation, which persisted for several picoseconds; time constants of 5.03 ± 0.38 ps and 2.36 ± 0.59 ps were measured using 2.43 and 2.14 eV probes, respectively. Polarization-dependent fs-CPTA measurements of PdAu24(SC8H9)18 clusters exhibit no spin-conversion dynamics, similar to the isoelectronic Au25(SC8H9)18 +1 counterpart. These observations of cluster-specific dynamics resulted from spin-polarized superatom P to D excitation, via an unpaired Pz electron of the open-shell seven-electron Au25(SC8H9)18 MPC. These results suggest that MPCs may serve as structurally well-defined prototypes for understanding spin and quantum state dynamics in nanoscale metal systems.

6.
Phys Chem Chem Phys ; 19(22): 14471-14477, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28534584

RESUMEN

We examined the electronic relaxation dynamics for mono and bimetallic Au144-xAgx(SC8H9)60 monolayer-protected clusters (MPCs) using femtosecond time-resolved transient extinction spectroscopy. MPCs provide compositionally well-defined model systems for structure-specific determination of nanoscale electronic properties. Based on pulse-energy-dependent transient extinction data, we quantified electron-phonon coupling constants for three distinct Au144-xAgx(SC8H9)60 MPC samples, where x = 0, 0 < x < 30, and x ∼ 30, as Gx=0 = (1.61 ± 0.1) × 1016 W m-3 K-1, Gx<30 = (1.74 ± 0.1) × 1016 W m-3 K-1 and Gx∼30 = (2.07 ± 0.15) × 1016 W m-3 K-1, respectively. These results reflect a trend of greater electron-phonon coupling efficiency with increasing silver content. Based on these data, we conclude that gold-atom replacement by silver occurs at surface sites of the 114-atom metal core of the MPC. Definitive determinations of functional response to nanoscale "alloy" formation and dopant inclusion are critical to establishing predictive models for the development of materials that feature nanoparticles as active components.

7.
Inorg Chem ; 55(3): 999-1001, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26760220

RESUMEN

The single-crystal X-ray structure of Pd-doped Au25(SR)18 was solved. The crystal structure reveals that in PdAu24(SR)18, the Pd atom is localized only to the centroid of the Au25(SR)18 cluster. This single-crystal X-ray structure shows that PdAu24(SR)18(0) is well conceptualized with the superatom theory. The PdAu24(SR)18(0) charge state is isoelectronic with Au25(SR)18(+1) as determined by a first order Jahn-Teller effect of similar magnitude and by electrochemical comparison. The previously reported increased stability of PdAu24(SR)18 can be rationalized in terms of Pd-Au bonds that are shorter than the Au-Au bonds in Au25(SR)18.


Asunto(s)
Glicoles de Etileno/química , Oro/química , Compuestos Organometálicos/química , Paladio/química , Cristalografía por Rayos X , Modelos Moleculares , Compuestos Organometálicos/síntesis química
8.
Angew Chem Int Ed Engl ; 54(32): 9249-52, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26089294

RESUMEN

Etching of gold with an excess of thiol ligand is used in both synthesis and analysis of gold particles. Mechanistically, the process of etching gold with excess thiol is unclear. Previous studies have obliquely considered the role of oxygen in thiolate etching of gold. Herein, we show that oxygen or a radical initiator is a necessary component for efficient etching of gold by thiolates. Attenuation of the etching process by radical scavengers in the presence of oxygen, and the restoration of activity by radical initiators under inert atmosphere, strongly implicate the oxygen radical. These data led us to propose an atomistic mechanism in which the oxygen radical initiates the etching process.


Asunto(s)
Depuradores de Radicales Libres/química , Oro/química , Compuestos de Sulfhidrilo/química , Nanopartículas del Metal/química , Tamaño de la Partícula , Fosfatidilcolinas/química
9.
J Am Chem Soc ; 136(11): 4129-32, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24588769

RESUMEN

The Au102(p-MBA)44 cluster (p-MBA: para-mercaptobenzoic acid) is observed as a chiral compound comprised of achiral components in its single-crystal structure. So far the enantiomers observed in the crystal structure are not isolated, nor is the circular dichroism spectrum known. A chiral phase transfer method is presented which allows partial resolution of the enantiomers by the use of a chiral ammonium bromide, (-)-1R,2S-N-dodecyl-N-methylephedrinium bromide ((-)-DMEBr). At sufficiently low concentration of (-)-DMEBr, the phase transfer from water to chloroform is incomplete. Both the aqueous and organic phases show optical activity of near mirror image relationship. Differences in the spectra are ascribed to the formation of diastereomeric salts. At high concentrations of (-)-DMEBr, full phase transfer is observed. The organic phase, however, still displays optical activity. We assume that one of the diastereomers has very strong optical activity, which overrules the cancelation of the spectra with opposite sign. Comparison with computations further corroborates the experimental data and allows a provisional assignment of handedness of each fraction.

10.
Anal Chem ; 86(16): 8425-32, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25033231

RESUMEN

The common selenium oxoanions selenite (SeO3(2-)) and selenate (SeO4(2-)) are toxic at intake levels slightly below 1 mg day(-1). These anions are currently monitored by a variety of traditional analytical techniques that are time-consuming, expensive, require large sample volumes, and/or lack portability. To address the need for a fast and inexpensive analysis of selenium oxoanions, we present the first microchip capillary zone electrophoresis (MCE) separation targeting these species in the presence of chloride, sulfate, nitrate, nitrite, chlorate, sulfamate, methanesulfonate, and fluoride, which can be simultaneously monitored. The chemistry was designed to give high selectivity in nonideal matrices. Interference from common weak acids is avoided by operating near pH 4. Separation resolution from chloride was enhanced to improve tolerance of high-salinity matrices. As a result, selenate can be quantified in the presence of up to 1.5 mM NaCl, and selenite analysis is even more robust against chloride. Using contact conductivity detection, detection limits for samples with conductivity equal to the background electrolyte are 53 nM (4.2 ppb Se) and 380 nM (30 ppb) for selenate and selenite, respectively. Analysis time, including injection, is ∼2 min. The MCE method was validated against ion chromatography (IC) using spiked samples of dilute BBL broth and slightly outperformed the IC in accuracy while requiring <10% of the analysis time. The applicability of the technique to real samples was shown by monitoring the consumption of selenite by bacteria incubated in LB broth.


Asunto(s)
Electroforesis por Microchip/métodos , Ácido Selénico/análisis , Ácido Selenioso/análisis , Aniones/análisis , Electrólitos/química , Electroforesis por Microchip/instrumentación , Diseño de Equipo , Límite de Detección
11.
Inorg Chem ; 53(13): 6500-2, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24956375

RESUMEN

The single-crystal X-ray structure of Au25(SC2H4Ph)16(pBBT)2 is presented. The crystallized compound resulted from ligand exchange of Au25(SC2H4Ph)18 with pBBT as the incoming ligand, and for the first time, ligand exchange is structurally resolved on the widely studied Au25(SR)18 compound. A single ligand in the asymmetric unit is observed to exchange, corresponding to two ligands in the molecule because of the crystallographic symmetry. The ligand-exchanged Au25 is bonded to the most solvent-exposed Au atom in the structure, making the exchange event consistent with an associative mechanism. The apparent nonexchange of other ligands is rationalized through possible selective crystallization of the observed product and differential bond lengths.

12.
J Phys Chem A ; 118(37): 8124-8, 2014 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-24628255

RESUMEN

Etching or size-focusing methods are now widespread for preparation of atomically monodisperse thiolate-protected gold nanoparticles. Size-focusing methods are not widespread, however, in the production of water-soluble gold nanoparticles. Reported here is a new method for size-focusing of large gold nanoparticles utilizing p-mercaptobenzoic acid. We observe preferential formation of three large gold nanoparticles with approximate masses of 23, 51, and 88 kDa. On the basis of the stability of these masses against further etching or growth, they appear to be especially stable sizes. These sizes are not prominent after etching challenges with organosoluble ligands, and the 51 and 88 kDa sizes appear to be novel stable thiolate-protected gold cluster sizes. The overall trend in particle size distribution over time is also unusual, with larger sizes dominating at longer time points.


Asunto(s)
Benzoatos/química , Oro/química , Nanopartículas del Metal/química , Nanotecnología/métodos , Tamaño de la Partícula , Compuestos de Sulfhidrilo/química , Ligandos , Solventes/química , Agua/química
13.
ACS Chem Biol ; 19(2): 289-299, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38295274

RESUMEN

Glutathione reductase-like metalloid reductase (GRLMR) is an enzyme that reduces selenodiglutathione (GS-Se-SG), forming zerovalent Se nanoparticles (SeNPs). Error-prone polymerase chain reaction was used to create a library of ∼10,000 GRLMR variants. The library was expressed in BL21Escherichia coli in liquid culture with 50 mM of SeO32- present, under the hypothesis that the enzyme variants with improved GS-Se-SG reduction kinetics would emerge. The selection resulted in a GRLMR variant with two mutations. One of the mutations (D-E) lacks an obvious functional role, whereas the other mutation is L-H within 5 Šof the enzyme active site. This mutation places a second H residue within 5 Šof an active site dicysteine. This GRLMR variant was characterized for NADPH-dependent reduction of GS-Se-SG, GSSG, SeO32-, SeO42-, GS-Te-SG, and TeO32-. The evolved enzyme demonstrated enhanced reduction of SeO32- and gained the ability to reduce SeO42-. This variant is named selenium reductase (SeR) because of its emergent broad activity for a wide variety of Se substrates, whereas the parent enzyme was specific for GS-Se-SG. This study overall suggests that new biosynthetic routes are possible for inorganic nanomaterials using laboratory-directed evolution methods.


Asunto(s)
Metaloides , Nanopartículas , Selenio , Oxidorreductasas/genética , Selenio/química , Cistina
14.
J Am Chem Soc ; 135(48): 18222-8, 2013 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-24195472

RESUMEN

Electronic energy relaxation of Au144(SR)60(q) ligand-protected nanoclusters, where SR = SC6H13 and q = -1, 0, +1, and +2, was examined using femtosecond time-resolved transient absorption spectroscopy. The observed differential transient spectra contained three distinct components: (1) transient bleaches at 525 and 600 nm, (2) broad visible excited-state absorption (ESA), and (3) stimulated emission (SE) at 670 nm. The bleach recovery kinetics depended upon the excitation pulse energy and were thus attributed to electron-phonon coupling typical of metallic nanostructures. The prominent bleach at 525 nm was assigned to a core-localized plasmon resonance (CLPR). ESA decay kinetics were oxidation-state dependent and could be described using a metal-sphere charging model. The dynamics, emission energy, and intensity of the SE peak exhibited dielectric-dependent responses indicative of Superatom charge transfer states. On the basis of these data, the Au144(SR)60 system is the smallest-known nanocluster to exhibit quantifiable electron dynamics and optical properties characteristic of metals.


Asunto(s)
Nanoestructuras/química , Compuestos Orgánicos de Oro/química , Electrones , Modelos Moleculares , Análisis Espectral
15.
J Phys Chem Lett ; 14(29): 6679-6685, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37463467

RESUMEN

The coherent vibrational dynamics of Au144(SC8H9)60, obtained from femtosecond time-resolved transient absorption spectroscopy, are described. Two acoustic modes were identified and assigned, including 2.0 THz breathing and 0.7 THz quadrupolar vibrations. These assignments are consistent with predictions using classical mechanics models, indicating that bulk models accurately describe the vibrational properties of Au144(SC8H9)60. Coherent phonon signals were persistent for up to 3 ps, indicating energy dissipation by the nanocluster was the primary dephasing channel. The initial excitation phases of the breathing and quadrupolar modes were π-phase-shifted, reflecting differences in the displacive nuclear motion of the vibrations. The combined agreement of the vibrational frequencies, relative phases, and decoherence times supported predictions based on classical models. The vibrational frequencies were insensitive to silver substitution for gold but did show increased inhomogeneous damping of the coherent phonons. The ability to predict the vibrational properties of metal nanoclusters can have an impact on nanoresonator and mass sensing technologies.

16.
J Phys Chem Lett ; 14(22): 5210-5215, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37257166

RESUMEN

The magneto-optical absorption properties of colloidal metal nanoclusters spanning nonmetallic to metallic regimes were examined using variable-temperature variable-field magnetic circular dichroism (VTVH-MCD) spectroscopy. Charge neutral Au25(SC8H9)18 exhibited MCD spectra dominated by Faraday C-terms, consistent with expectations for a nonmetallic paramagnetic nanocluster. This response is reconciled by the open-shell superatom configuration of Au25(SC8H9)18. Metallic and plasmon-supporting Au459(pMBA)170 exhibited temperature-independent VTVH-MCD spectra dominated by Faraday A-terms. Au144(SC8H9)60, which is intermediate to the metallic and nonmetallic limits, showed the most complex VTVH-MCD response of the three nanoclusters, consisting of 19 distinguishable peaks spanning the visible and near-infrared (3.0-1.4 eV). Variable-temperature analysis suggested that none of these transitions originated from plasmon excitation. However, evidence for both paramagnetic and mixed (i.e., nondiscrete) transitions of Au144(SC8H9)60 was observed. These results highlight the complexity of gold nanocluster electronic transitions that emerge as sizes approach metallic length scales. Nanoclusters in this regime may provide opportunities for tailoring the magneto-optical properties of colloidal nanostructures.

17.
Chem Commun (Camb) ; 59(56): 8626-8643, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37345851

RESUMEN

When a defined protein/peptide (or combinations thereof) control and define the synthesis of an inorganic nanoparticle, the result is a cloneable NanoParticle (cNP). This is because the protein sequence/structure/function is encoded in DNA, and therefore the physicochemical properties of the nanoparticle are also encoded in DNA. Thus the cloneable nanoparticle paradigm can be considered as an extension of the central dogma of molecular biology (e.g. DNA → mRNA → protein → cNP); modifications to the DNA encoding a cNP can modify the resulting properties of the cNP. Inorganic ion oxidoreductases (e.g., mercuric reductase, tellurite reductase, etc.) can select and reduce specific inorganic oxyanions and coordination complexes, creating zerovalent precipitates. Other proteins/peptides (often genetically concatenated to the parent oxidoreductase) serve as ligands, directing the size, shape, crystal structure and other properties of the nanoparticle. The DNA encoding a cNP can be recombinantly transferred into any organism. Ideally, this enables recombinant production of cNPs with the same defined physiochemical properties. Such cNPs are of interest for applications ranging from molecular imaging, bio-remediation, catalysis, and biomining. In this Feature Article we detail and define the cNP concept, and retrace the story of our creation of a cloneable Se NanoParticle (cSeNP). We also describe our more preliminary work that we expect to result in cloneable semiconductor quantum dots, cloneable Te nanoparticles, and other cNP formulations. We highlight the application of cNPs in cellular electron microscopy and compare this approach to other cloneable imaging contrast approaches.


Asunto(s)
Nanopartículas , Nanopartículas/química , Microscopía Electrónica
18.
J Am Chem Soc ; 134(41): 16937-40, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-23013617

RESUMEN

The exceptional stability of ligand-stabilized gold nanoclusters such as Au(25)(SC(6)H(13))(18)(-), Au(39)(PR(3))(14)X(6)(-), and Au(102)(SR)(44) arises from the total filling of superatomic electron shells, resulting in a "noble-gas superatom" electron configuration. Electrochemical manipulation of the oxidation state can add or remove electrons from superatom orbitals, creating species electronically analogous to atomic radicals. Herein we show that oxidizing the Au(25)(SR)(18)(-) superatom from the noble-gas-like 1S(2)1P(6) electron configuration to the open-shell radical 1S(2)1P(5) and diradical 1S(2)1P(4) configurations results in decreased thermal stability of the compound, as measured by differential scanning calorimetry. Similar experiments probing five oxidation states of the putatively geometrically stabilized Au(144)(SR)(60) cluster suggest a more complex relationship between oxidation state and thermal stability for this compound.

19.
J Am Chem Soc ; 134(32): 13316-22, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22816317

RESUMEN

Ligand exchange reactions are widely used for imparting new functionality on or integrating nanoparticles into devices. Thiolate-for-thiolate ligand exchange in monolayer protected gold nanoclusters has been used for over a decade; however, a firm structural basis of this reaction has been lacking. Herein, we present the first single-crystal X-ray structure of a partially exchanged Au(102)(p-MBA)(40)(p-BBT)(4) (p-MBA = para-mercaptobenzoic acid, p-BBT = para-bromobenzene thiol) with p-BBT as the incoming ligand. The crystal structure shows that 2 of the 22 symmetry-unique p-MBA ligand sites are partially exchanged to p-BBT under the initial fast kinetics in a 5 min timescale exchange reaction. Each of these ligand-binding sites is bonded to a different solvent-exposed Au atom, suggesting an associative mechanism for the initial ligand exchange. Density functional theory calculations modeling both thiol and thiolate incoming ligands postulate a mechanistic pathway for thiol-based ligand exchange. The discrete modification of a small set of ligand binding sites suggests Au(102)(p-MBA)(44) as a powerful platform for surface chemical engineering.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Solventes/química , Termodinámica
20.
Small ; 8(14): 2277-86, 2012 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-22517616

RESUMEN

Gold nanoparticles (AuNPs) with core sizes below 2 nm and compact ligand shells constitute versatile platforms for the development of novel reagents in nanomedicine. Due to their ultrasmall size, these AuNPs are especially attractive in applications requiring delivery to crowded intracellular spaces in the cytosol and nucleus. For eventual use in vivo, ultrasmall AuNPs should ideally be monodisperse, since small variations in size may affect how they interact with cells and how they behave in the body. Here we report the synthesis of ultrasmall, uniform 144-atom AuNPs protected by p-mercaptobenzoic acid followed by ligand exchange with glutathione (GSH). Quantitative scanning transmission electron microscopy (STEM) reveals that the resulting GSH-coated nanoparticles (Au(GSH)) have a uniform mass distribution with cores that contain 134 gold atoms on average. Particle size dispersity is analyzed by analytical ultracentrifugation, giving a narrow distribution of apparent hydrodynamic diameter of 4.0 ± 0.6 nm. To evaluate the nanoparticles' intracellular fate, the cell-penetrating peptide TAT is attached noncovalently to Au(GSH), which is confirmed by fluorescence quenching and isothermal titration calorimetry. HeLa cells are then incubated with both Au(GSH) and the Au(GSH)-TAT complex, and imaged without silver enhancement of the AuNPs in unstained thin sections by STEM. This imaging approach enables unbiased detection and quantification of individual ultrasmall nanoparticles and aggregates in the cytoplasm and nucleus of the cells.


Asunto(s)
Glutatión/química , Oro/química , Nanopartículas del Metal/química , Glutatión/metabolismo , Células HeLa , Humanos , Espacio Intracelular/metabolismo , Microscopía Electrónica de Transmisión de Rastreo , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA