Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 28(20): 3339-3354, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31334547

RESUMEN

Human dihydrolipoamide dehydrogenase (hLADH, hE3) deficiency (OMIM# 246900) is an often prematurely lethal genetic disease usually caused by inactive or partially inactive hE3 variants. Here we report the crystal structure of wild-type hE3 at an unprecedented high resolution of 1.75 Å and the structures of six disease-causing hE3 variants at resolutions ranging from 1.44 to 2.34 Å. P453L proved to be the most deleterious substitution in structure as aberrations extensively compromised the active site. The most prevalent G194C-hE3 variant primarily exhibited structural alterations close to the substitution site, whereas the nearby cofactor-binding residues were left unperturbed. The G426E substitution mainly interfered with the local charge distribution introducing dynamics to the substitution site in the dimer interface; G194C and G426E both led to minor structural changes. The R460G, R447G and I445M substitutions all perturbed a solvent accessible channel, the so-called H+/H2O channel, leading to the active site. Molecular pathomechanisms of enhanced reactive oxygen species (ROS) generation and impaired binding to multienzyme complexes were also addressed according to the structural data for the relevant mutations. In summary, we present here for the first time a comprehensive study that links three-dimensional structures of disease-causing hE3 variants to residual hLADH activities, altered capacities for ROS generation, compromised affinities for multienzyme complexes and eventually clinical symptoms. Our results may serve as useful starting points for future therapeutic intervention approaches.


Asunto(s)
Dihidrolipoamida Deshidrogenasa/deficiencia , Complejos Multienzimáticos/metabolismo , Dominio Catalítico , Dihidrolipoamida Deshidrogenasa/genética , Humanos , Complejos Multienzimáticos/genética , Mutagénesis Sitio-Dirigida , Mutación/genética , Conformación Proteica , Especies Reactivas de Oxígeno/metabolismo
2.
Biochim Biophys Acta Bioenerg ; 1859(9): 909-924, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29746824

RESUMEN

Provision of NAD+ for oxidative decarboxylation of alpha-ketoglutarate to succinyl-CoA by the ketoglutarate dehydrogenase complex (KGDHC) is critical for maintained operation of succinyl-CoA ligase yielding high-energy phosphates, a process known as mitochondrial substrate-level phosphorylation (mSLP). We have shown previously that when NADH oxidation by complex I is inhibited by rotenone or anoxia, mitochondrial diaphorases yield NAD+, provided that suitable quinones are present (Kiss G et al., FASEB J 2014, 28:1682). This allows for KGDHC reaction to proceed and as an extension of this, mSLP. NAD(P)H quinone oxidoreductase 1 (NQO1) is an enzyme exhibiting diaphorase activity. Here, by using Nqo1-/- and WT littermate mice we show that in rotenone-treated, isolated liver mitochondria 2-methoxy-1,4-naphtoquinone (MNQ) is preferentially reduced by matrix Nqo1 yielding NAD+ to KGDHC, supporting mSLP. This process was sensitive to inhibition by specific diaphorase inhibitors. Reduction of idebenone and its analogues MRQ-20 and MRQ-56, menadione, mitoquinone and duroquinone were unaffected by genetic disruption of the Nqo1 gene. The results allow for the conclusions that i) MNQ is a Nqo1-preferred substrate, and ii) in the presence of suitable quinones, mitochondrially-localized diaphorases other than Nqo1 support NADH oxidation when complex I is inhibited. Our work confirms that complex I bypass can occur by quinones reduced by intramitochondrial diaphorases oxidizing NADH, ultimately supporting mSLP. Finally, it may help to elucidate structure-activity relationships of redox-active quinones with diaphorase enzymes.


Asunto(s)
Acilcoenzima A/metabolismo , Mitocondrias Hepáticas/enzimología , NAD(P)H Deshidrogenasa (Quinona)/fisiología , NAD/metabolismo , Naftoquinonas/química , Animales , Respiración de la Célula , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Fosforilación , Especificidad por Sustrato
3.
Biochim Biophys Acta ; 1862(11): 2098-2109, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27544700

RESUMEN

Pathogenic amino acid substitutions of the common E3 component (hE3) of the human alpha-ketoglutarate dehydrogenase and the pyruvate dehydrogenase complexes lead to severe metabolic diseases (E3 deficiency), which usually manifest themselves in cardiological and/or neurological symptoms and often cause premature death. To date, 14 disease-causing amino acid substitutions of the hE3 component have been reported in the clinical literature. None of the pathogenic protein variants has lent itself to high-resolution structure elucidation by X-ray or NMR. Hence, the structural alterations of the hE3 protein caused by the disease-causing mutations and leading to dysfunction, including the enhanced generation of reactive oxygen species by selected disease-causing variants, could only be speculated. Here we report results of an examination of the effects on the protein structure of ten pathogenic mutations of hE3 using hydrogen/deuterium-exchange mass spectrometry (HDX-MS), a new and state-of-the-art approach of solution structure elucidation. On the basis of the results, putative structural and mechanistic conclusions were drawn regarding the molecular pathogenesis of each disease-causing hE3 mutation addressed in this study.

4.
Biochim Biophys Acta ; 1861(11): 1727-1735, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27542539

RESUMEN

Encysted embryos (cysts) of the crustacean Artemia franciscana exhibit enormous tolerance to adverse conditions encompassing high doses of radiation, years of anoxia, desiccation and extreme salinity. So far, several mechanisms have been proposed to contribute to this extremophilia, however, none were sought in the lipid profile of the cysts. Here in, we used high resolution shotgun lipidomics suited for detailed quantitation and analysis of lipids in uncharacterized biological membranes and samples and assembled the total, mitochondrial and mitoplastic lipidome of Artemia franciscana cysts. Overall, we identified and quantitated 1098 lipid species dispersed among 22 different classes and subclasses. Regarding the mitochondrial lipidome, most lipid classes exhibited little differences from those reported in other animals, however, Artemia mitochondria harboured much less phosphatidylethanolamine, plasmenylethanolamines and ceramides than mitochondria of other species, some of which by two orders of magnitude. Alternatively, Artemia mitochondria exhibited much higher levels of phosphatidylglycerols and phosphatidylserines. The identification and quantitation of the total and mitochondrial lipidome of the cysts may help in the elucidation of actionable extremophilia-affording proteins, such as the 'late embryogenesis abundant' proteins, which are known to interact with lipid membranes.


Asunto(s)
Artemia/embriología , Artemia/metabolismo , Embrión no Mamífero/metabolismo , Metabolismo de los Lípidos , Metaboloma , Mitocondrias/metabolismo , Animales , Western Blotting , Cardiolipinas/metabolismo , Análisis por Conglomerados
5.
FASEB J ; 30(1): 286-300, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26358042

RESUMEN

Itaconate is a nonamino organic acid exhibiting antimicrobial effects. It has been recently identified in cells of macrophage lineage as a product of an enzyme encoded by immunoresponsive gene 1 (Irg1), acting on the citric acid cycle intermediate cis-aconitate. In mitochondria, itaconate can be converted by succinate-coenzyme A (CoA) ligase to itaconyl-CoA at the expense of ATP (or GTP), and is also a weak competitive inhibitor of complex II. Here, we investigated specific bioenergetic effects of increased itaconate production mediated by LPS-induced stimulation of Irg1 in murine bone marrow-derived macrophages (BMDM) and RAW-264.7 cells. In rotenone-treated macrophage cells, stimulation by LPS led to impairment in substrate-level phosphorylation (SLP) of in situ mitochondria, deduced by a reversal in the directionality of the adenine nucleotide translocase operation. In RAW-264.7 cells, the LPS-induced impairment in SLP was reversed by short-interfering RNA(siRNA)-but not scrambled siRNA-treatment directed against Irg1. LPS dose-dependently inhibited oxygen consumption rates (61-91%) and elevated glycolysis rates (>21%) in BMDM but not RAW-264.7 cells, studied under various metabolic conditions. In isolated mouse liver mitochondria treated with rotenone, itaconate dose-dependently (0.5-2 mM) reversed the operation of adenine nucleotide translocase, implying impairment in SLP, an effect that was partially mimicked by malonate. However, malonate yielded greater ADP-induced depolarizations (3-19%) than itaconate. We postulate that itaconate abolishes SLP due to 1) a "CoA trap" in the form of itaconyl-CoA that negatively affects the upstream supply of succinyl-CoA from the α-ketoglutarate dehydrogenase complex; 2) depletion of ATP (or GTP), which are required for the thioesterification by succinate-CoA ligase; and 3) inhibition of complex II leading to a buildup of succinate which shifts succinate-CoA ligase equilibrium toward ATP (or GTP) utilization. Our results support the notion that Irg1-expressing cells of macrophage lineage lose the capacity of mitochondrial SLP for producing itaconate during mounting of an immune defense.


Asunto(s)
Hidroliasas/metabolismo , Macrófagos/metabolismo , Mitocondrias Hepáticas/metabolismo , Succinatos/farmacología , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Femenino , Glucólisis , Hidroliasas/genética , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Masculino , Malonatos/farmacología , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/efectos de los fármacos , Translocasas Mitocondriales de ADP y ATP/metabolismo , Fosforilación Oxidativa , Rotenona/farmacología , Succinato-CoA Ligasas/metabolismo
6.
Biochem J ; 473(20): 3463-3485, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27496549

RESUMEN

Succinate-CoA ligase (SUCL) is a heterodimer enzyme composed of Suclg1 α-subunit and a substrate-specific Sucla2 or Suclg2 ß-subunit yielding ATP or GTP, respectively. In humans, the deficiency of this enzyme leads to encephalomyopathy with or without methylmalonyl aciduria, in addition to resulting in mitochondrial DNA depletion. We generated mice lacking either one Sucla2 or Suclg2 allele. Sucla2 heterozygote mice exhibited tissue- and age-dependent decreases in Sucla2 expression associated with decreases in ATP-forming activity, but rebound increases in cardiac Suclg2 expression and GTP-forming activity. Bioenergetic parameters including substrate-level phosphorylation (SLP) were not different between wild-type and Sucla2 heterozygote mice unless a submaximal pharmacological inhibition of SUCL was concomitantly present. mtDNA contents were moderately decreased, but blood carnitine esters were significantly elevated. Suclg2 heterozygote mice exhibited decreases in Suclg2 expression but no rebound increases in Sucla2 expression or changes in bioenergetic parameters. Surprisingly, deletion of one Suclg2 allele in Sucla2 heterozygote mice still led to a rebound but protracted increase in Suclg2 expression, yielding double heterozygote mice with no alterations in GTP-forming activity or SLP, but more pronounced changes in mtDNA content and blood carnitine esters, and an increase in succinate dehydrogenase activity. We conclude that a partial reduction in Sucla2 elicits rebound increases in Suclg2 expression, which is sufficiently dominant to overcome even a concomitant deletion of one Suclg2 allele, pleiotropically affecting metabolic pathways associated with SUCL. These results as well as the availability of the transgenic mouse colonies will be of value in understanding SUCL deficiency.


Asunto(s)
Succinato-CoA Ligasas/metabolismo , Alelos , Animales , Western Blotting , Carnitina/análogos & derivados , Carnitina/metabolismo , Células Cultivadas , ADN Mitocondrial/genética , Heterocigoto , Humanos , Técnicas In Vitro , Potencial de la Membrana Mitocondrial/genética , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Noqueados , Ratones Mutantes , Mitocondrias/genética , Fosforilación/genética , Fosforilación/fisiología , ARN Mensajero/genética , Succinato-CoA Ligasas/genética
7.
J Biol Chem ; 289(43): 29859-73, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25210035

RESUMEN

Herein are reported unique properties of the human 2-oxoglutarate dehydrogenase multienzyme complex (OGDHc), a rate-limiting enzyme in the Krebs (citric acid) cycle. (a) Functionally competent 2-oxoglutarate dehydrogenase (E1o-h) and dihydrolipoyl succinyltransferase components have been expressed according to kinetic and spectroscopic evidence. (b) A stable free radical, consistent with the C2-(C2α-hydroxy)-γ-carboxypropylidene thiamin diphosphate (ThDP) cation radical was detected by electron spin resonance upon reaction of the E1o-h with 2-oxoglutarate (OG) by itself or when assembled from individual components into OGDHc. (c) An unusual stability of the E1o-h-bound C2-(2α-hydroxy)-γ-carboxypropylidene thiamin diphosphate (the "ThDP-enamine"/C2α-carbanion, the first postdecarboxylation intermediate) was observed, probably stabilized by the 5-carboxyl group of OG, not reported before. (d) The reaction of OG with the E1o-h gave rise to superoxide anion and hydrogen peroxide (reactive oxygen species (ROS)). (e) The relatively stable enzyme-bound enamine is the likely substrate for oxidation by O2, leading to the superoxide anion radical (in d) and the radical (in b). (f) The specific activity assessed for ROS formation compared with the NADH (overall complex) activity, as well as the fraction of radical intermediate occupying active centers of E1o-h are consistent with each other and indicate that radical/ROS formation is an "off-pathway" side reaction comprising less than 1% of the "on-pathway" reactivity. However, the nearly ubiquitous presence of OGDHc in human tissues, including the brain, makes these findings of considerable importance in human metabolism and perhaps disease.


Asunto(s)
Aminas/metabolismo , Radicales Libres/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Tiamina Pirofosfato/metabolismo , Dicroismo Circular , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Ácidos Cetoglutáricos , Cinética , Organofosfonatos/metabolismo , Oxidación-Reducción , Ácidos Fosfínicos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Análisis Espectral , Tiamina
8.
J Bioenerg Biomembr ; 47(1-2): 33-41, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25370487

RESUMEN

We have recently shown that the ATP-forming SUCLA2 subunit of succinyl-CoA ligase, an enzyme of the citric acid cycle, is exclusively expressed in neurons of the human cerebral cortex; GFAP- and S100-positive astroglial cells did not exhibit immunohistoreactivity or in situ hybridization reactivity for either SUCLA2 or the GTP-forming SUCLG2. However, Western blotting of post mortem samples revealed a minor SUCLG2 immunoreactivity. In the present work we sought to identify the cell type(s) harboring SUCLG2 in paraformaldehyde-fixed, free-floating surgical human cortical tissue samples. Specificity of SUCLG2 antiserum was supported by co-localization with mitotracker orange staining of paraformaldehyde-fixed human fibroblast cultures, delineating the mitochondrial network. In human cortical tissue samples, microglia and oligodendroglia were identified by antibodies directed against Iba1 and myelin basic protein, respectively. Double immunofluorescence for SUCLG2 and Iba1 or myelin basic protein exhibited no co-staining; instead, SUCLG2 appeared to outline the cerebral microvasculature. In accordance to our previous work there was no co-localization of SUCLA2 immunoreactivity with either Iba1 or myelin basic protein. We conclude that SUCLG2 exist only in cells forming the vasculature or its contents in the human brain. The absence of SUCLA2 and SUCLG2 in human glia is in compliance with the presence of alternative pathways occurring in these cells, namely the GABA shunt and ketone body metabolism which do not require succinyl CoA ligase activity, and glutamate dehydrogenase 1, an enzyme exhibiting exquisite sensitivity to inhibition by GTP.


Asunto(s)
Corteza Cerebral/enzimología , Neuroglía/enzimología , Succinato-CoA Ligasas/metabolismo , Anciano , Proteínas de Unión al Calcio , Proteínas de Unión al ADN/metabolismo , Femenino , Fibroblastos/enzimología , Humanos , Masculino , Proteínas de Microfilamentos , Persona de Mediana Edad , Proteína Básica de Mielina/metabolismo , Fosforilación/fisiología
9.
FASEB J ; 28(4): 1682-97, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24391134

RESUMEN

Substrate-level phosphorylation mediated by succinyl-CoA ligase in the mitochondrial matrix produces high-energy phosphates in the absence of oxidative phosphorylation. Furthermore, when the electron transport chain is dysfunctional, provision of succinyl-CoA by the α-ketoglutarate dehydrogenase complex (KGDHC) is crucial for maintaining the function of succinyl-CoA ligase yielding ATP, preventing the adenine nucleotide translocase from reversing. We addressed the source of the NAD(+) supply for KGDHC under anoxic conditions and inhibition of complex I. Using pharmacologic tools and specific substrates and by examining tissues from pigeon liver exhibiting no diaphorase activity, we showed that mitochondrial diaphorases in the mouse liver contribute up to 81% to the NAD(+) pool during respiratory inhibition. Under these conditions, KGDHC's function, essential for the provision of succinyl-CoA to succinyl-CoA ligase, is supported by NAD(+) derived from diaphorases. Through this process, diaphorases contribute to the maintenance of substrate-level phosphorylation during respiratory inhibition, which is manifested in the forward operation of adenine nucleotide translocase. Finally, we show that reoxidation of the reducible substrates for the diaphorases is mediated by complex III of the respiratory chain.


Asunto(s)
Adenosina Trifosfato/metabolismo , Ciclo del Ácido Cítrico , Dihidrolipoamida Deshidrogenasa/metabolismo , Mitocondrias Hepáticas/metabolismo , NAD/metabolismo , Acilcoenzima A/metabolismo , Animales , Columbidae , Dihidrolipoamida Deshidrogenasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Hipoxia/metabolismo , Complejo Cetoglutarato Deshidrogenasa/antagonistas & inhibidores , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Hepáticas/fisiología , Translocasas Mitocondriales de ADP y ATP/metabolismo , Modelos Biológicos , Nitrilos/farmacología , Oxidación-Reducción , Fosforilación Oxidativa , Especificidad por Sustrato , Succinato-CoA Ligasas/metabolismo , Desacopladores/farmacología
10.
FASEB J ; 27(6): 2392-406, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23475850

RESUMEN

A decline in α-ketoglutarate dehydrogenase complex (KGDHC) activity has been associated with neurodegeneration. Provision of succinyl-CoA by KGDHC is essential for generation of matrix ATP (or GTP) by substrate-level phosphorylation catalyzed by succinyl-CoA ligase. Here, we demonstrate ATP consumption in respiration-impaired isolated and in situ neuronal somal mitochondria from transgenic mice with a deficiency of either dihydrolipoyl succinyltransferase (DLST) or dihydrolipoyl dehydrogenase (DLD) that exhibit a 20-48% decrease in KGDHC activity. Import of ATP into the mitochondrial matrix of transgenic mice was attributed to a shift in the reversal potential of the adenine nucleotide translocase toward more negative values due to diminished matrix substrate-level phosphorylation, which causes the translocase to reverse prematurely. Immunoreactivity of all three subunits of succinyl-CoA ligase and maximal enzymatic activity were unaffected in transgenic mice as compared to wild-type littermates. Therefore, decreased matrix substrate-level phosphorylation was due to diminished provision of succinyl-CoA. These results were corroborated further by the finding that mitochondria from wild-type mice respiring on substrates supporting substrate-level phosphorylation exhibited ~30% higher ADP-ATP exchange rates compared to those obtained from DLST(+/-) or DLD(+/-) littermates. We propose that KGDHC-associated pathologies are a consequence of the inability of respiration-impaired mitochondria to rely on "in-house" mitochondrial ATP reserves.


Asunto(s)
Aciltransferasas/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Dihidrolipoamida Deshidrogenasa/deficiencia , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/genética , Animales , Dihidrolipoamida Deshidrogenasa/genética , Dihidrolipoamida Deshidrogenasa/metabolismo , Femenino , Complejo Cetoglutarato Deshidrogenasa/química , Complejo Cetoglutarato Deshidrogenasa/deficiencia , Complejo Cetoglutarato Deshidrogenasa/genética , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación , Especificidad por Sustrato
11.
Hum Mol Genet ; 20(15): 2984-95, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21558426

RESUMEN

We investigated pathogenic mutations relevant in dihydrolipoamide dehydrogenase (LADH; gene: Dld) deficiency, a severe human disease, to elucidate how they alter reactive oxygen species (ROS) generation and associated biophysical characteristics of LADH. Twelve known disease-causing mutants of human LADH have been expressed and purified to homogeneity from E. coli. Detailed biophysical and biochemical characterization of the mutants has been performed applying circular dichroism (CD) spectroscopy, nano-spray mass spectrometry (MS), calibrated gel filtration and flavin adenine dinucleotide-content analysis. Functional analyses revealed that four of the pathogenic mutations significantly stimulated the ROS-generating activity of LADH and also increased its sensitivity to an acidic shift in pH. LADH activity was reduced by variable extents in the mutants exhibiting excessive ROS generation. It is remarkable that in the P453L mutant, enzyme activity was nearly completely lost with a ROS-forming activity becoming dominant, whereas the G194C mutation, common among Ashkenazi Jews, resulted in no alteration in LADH activity but a gain in the ROS-generating activity. There have been neither major conformational alterations nor monomerization of the functional homodimer of LADH associated with the higher ROS-generating capacity as measured by CD spectroscopy and size-exclusion chromatography combined with nano-spray MS, respectively. The excessive ROS generation of selected LADH mutants could be an important factor in the pathology and clinical presentation of human LADH deficiency and raises the possibility of an antioxidant therapy in the treatment of this condition.


Asunto(s)
Dihidrolipoamida Deshidrogenasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cromatografía en Gel , Dicroismo Circular , Dihidrolipoamida Deshidrogenasa/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Espectrometría de Masas
12.
Arch Biochem Biophys ; 538(2): 145-55, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24012808

RESUMEN

Human dihydrolipoamide dehydrogenase (LADH, E3) is a component in the pyruvate-, alpha-ketoglutarate- and branched-chain ketoacid dehydrogenase complexes and in the glycine cleavage system. The pathogenic mutations of LADH cause severe metabolic disturbances, called E3 deficiency that often involve cardiological and neurological symptoms and premature death. Our laboratory has recently shown that some of the known pathogenic mutations augment the reactive oxygen species (ROS) generation capacity of LADH, which may contribute to the clinical presentations. A recent report concluded that elevated oxidative stress generated by the above mutants turns the lipoic acid cofactor on the E2 subunits dysfunctional. In the present contribution we generated by molecular dynamics (MD) simulation the conformation of LADH that is proposed to be compatible with ROS generation. We propose here for the first time the structural changes, which are likely to turn the physiological LADH conformation to its ROS-generating conformation. We also created nine of the pathogenic mutants of the ROS-generating conformation and again used MD simulation to detect structural changes that the mutations induced in this LADH conformation. We propose the structural changes that may lead to the modulation in ROS generation of LADH by the pathogenic mutations.


Asunto(s)
Dihidrolipoamida Deshidrogenasa/genética , Dihidrolipoamida Deshidrogenasa/metabolismo , Mutación , Especies Reactivas de Oxígeno/metabolismo , Dihidrolipoamida Deshidrogenasa/química , Humanos , Simulación de Dinámica Molecular , Conformación Proteica
13.
J Biol Chem ; 286(8): 6345-53, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21173147

RESUMEN

Cyclophilin D (cypD)-deficient mice exhibit resistance to focal cerebral ischemia and to necrotic but not apoptotic stimuli. To address this disparity, we investigated isolated brain and in situ neuronal and astrocytic mitochondria from cypD-deficient and wild-type mice. Isolated mitochondria were challenged by high Ca(2+), and the effects of substrates and respiratory chain inhibitors were evaluated on permeability transition pore opening by light scatter. In situ neuronal and astrocytic mitochondria were visualized by mito-DsRed2 targeting and challenged by calcimycin, and the effects of glucose, NaCN, and an uncoupler were evaluated by measuring mitochondrial volume. In isolated mitochondria, Ca(2+) caused a large cypD-dependent change in light scatter in the absence of substrates that was insensitive to Ruthenium red or Ru360. Uniporter inhibitors only partially affected the entry of free Ca(2+) in the matrix. Inhibition of complex III/IV negated the effect of substrates, but inhibition of complex I was protective. Mitochondria within neurons and astrocytes exhibited cypD-independent swelling that was dramatically hastened when NaCN and 2-deoxyglucose were present in a glucose-free medium during calcimycin treatment. In the presence of an uncoupler, cypD-deficient astrocytic mitochondria performed better than wild-type mitochondria, whereas the opposite was observed in neurons. Neuronal mitochondria were examined further during glutamate-induced delayed Ca(2+) deregulation. CypD-knock-out mitochondria exhibited an absence or a delay in the onset of mitochondrial swelling after glutamate application. Apparently, some conditions involving deenergization render cypD an important modulator of PTP in the brain. These findings could explain why absence of cypD protects against necrotic (deenergized mitochondria), but not apoptotic (energized mitochondria) stimuli.


Asunto(s)
Encéfalo/enzimología , Calcio/metabolismo , Ciclofilinas/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Astrocitos/citología , Astrocitos/enzimología , Encéfalo/citología , Células Cultivadas , Peptidil-Prolil Isomerasa F , Ciclofilinas/genética , Transporte de Electrón/fisiología , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/enzimología
14.
Biochim Biophys Acta ; 1802(1): 221-7, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19715757

RESUMEN

ATP provided by oxidative phosphorylation supports highly complex and energetically expensive cellular processes. Yet, in several pathological settings, mitochondria could revert to ATP consumption, aggravating an existing cellular pathology. Here we review (i) the pathological conditions leading to ATP hydrolysis by the reverse operation of the mitochondrial F(o)F(1)-ATPase, (ii) molecular and thermodynamic factors influencing the directionality of the F(o)F(1)-ATPase, (iii) the role of the adenine nucleotide translocase as the intermediary adenine nucleotide flux pathway between the cytosol and the mitochondrial matrix when mitochondria become ATP consumers, (iv) the role of the permeability transition pore in bypassing the ANT, thereby allowing the flux of ATP directly to the hydrolyzing F(o)F(1)-ATPase, (v) the impact of the permeability transition pore on glycolytic ATP production, and (vi) endogenous and exogenous interventions for limiting ATP hydrolysis by the mitochondrial F(o)F(1)-ATPase.


Asunto(s)
Adenosina Trifosfato/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfatasas/metabolismo , Metabolismo Energético , Humanos , Hidrólisis , Mitocondrias/enzimología , Modelos Biológicos , Enfermedades Neurodegenerativas/metabolismo
15.
Biochim Biophys Acta ; 1797(6-7): 922-8, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20230776

RESUMEN

The effect of Ca2+ applied in high concentrations (50 and 300 microM) was addressed on the generation of reactive oxygen species in isolated mitochondria from guinea-pig brain. The experiments were performed in the presence of ADP, a very effective inhibitor of mitochondrial permeability transition. Moderate increase in H2O2 release from mitochondria was induced by Ca2+ applied in 50 microM, but not in 300 microM concentration as measured with Amplex red fluorescent assay starting with a delay of 100-150 sec after exposure to Ca2+. Parallel measurements of membrane potential (DeltaPsim) by safranine fluorescence showed a transient depolarization by Ca2+ followed by the recovery of DeltaPsim to a value, which was more negative than that observed before addition of Ca2+ indicating a relative hyperpolarization. NAD(P)H fluorescence was also increased by Ca2+ given in 50 microM concentration. In mitochondria having high DeltaPsim in the presence of oligomycin or ATP, the basal rate of release of H2O2 was significantly higher than that observed in a medium containing ADP and Ca2+ no longer increased but rather decreased the rate of H2O2 release. With 300 microM Ca2+ only a loss but no tendency of a recovery of DeltaPsim was detected and H2O2 release was unchanged. It is suggested that in the presence of nucleotides the effect of Ca2+ on mitochondrial ROS release is related to changes in DeltaPsim; in depolarized mitochondria, in the presence of ADP, moderate increase in H2O2 release is induced by calcium, but only in

Asunto(s)
Encéfalo/metabolismo , Calcio/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Adenosina Difosfato/farmacología , Animales , Cobayas , Peróxido de Hidrógeno/metabolismo , Técnicas In Vitro , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Poro de Transición de la Permeabilidad Mitocondrial , Dilatación Mitocondrial/efectos de los fármacos , NAD/metabolismo , NADP/metabolismo , Oligomicinas/farmacología
16.
J Neurosci Res ; 89(12): 1965-72, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21541982

RESUMEN

In the present work, the Ca(2+) dependence of mitochondrial H(2) O(2) elimination was investigated. Mitochondria isolated from guinea pig brain were energized by glutamate and malate and incubated with micromolar concentrations of Ca(2+) in the presence of ADP, preventing permeability transition pore formation. After the completion of Ca(2+) uptake, mitochondria were challenged with H(2) O(2) (5 µM), then at various time points residual H(2) O(2) was determined using the Amplex red method and compared with that in mitochondria incubated with H(2) O(2) without Ca(2+) addition. Dose-dependent inhibition of H(2) O(2) elimination by Ca(2+) was detected, which was prevented by the Ca(2+) -uptake inhibitor Ru 360. Stimulation of Ca(2+) release from Ca(2+) -loaded mitochondria by a combined addition of Ru 360 and Na(+) decreased the Ca(2+) -evoked inhibition of H(2) O(2) removal. After Ca(2+) uptake (50 µM), mitochondrial aconitase activity was found to be decreased, which was partially attributable to the impaired elimination of endogenously produced reactive oxygen species. We found that the effects of Ca(2+) and H(2) O(2) on the activity of aconitase were additive. These results confirm that Ca(2+) inhibits elimination of H(2) O(2) in mitochondria and demonstrate that this effect is concentration dependent and reversible. The phenomenon described here can play a role in the modulation of ROS handling under conditions involving excessive cellular Ca(2+) load.


Asunto(s)
Encéfalo/metabolismo , Calcio/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Calcio/farmacología , Cobayas , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/efectos de los fármacos
17.
FASEB J ; 24(7): 2405-16, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20207940

RESUMEN

In pathological conditions, F(0)F(1)-ATPase hydrolyzes ATP in an attempt to maintain mitochondrial membrane potential. Using thermodynamic assumptions and computer modeling, we established that mitochondrial membrane potential can be more negative than the reversal potential of the adenine nucleotide translocase (ANT) but more positive than that of the F(0)F(1)-ATPase. Experiments on isolated mitochondria demonstrated that, when the electron transport chain is compromised, the F(0)F(1)-ATPase reverses, and the membrane potential is maintained as long as matrix substrate-level phosphorylation is functional, without a concomitant reversal of the ANT. Consistently, no cytosolic ATP consumption was observed using plasmalemmal K(ATP) channels as cytosolic ATP biosensors in cultured neurons, in which their in situ mitochondria were compromised by respiratory chain inhibitors. This finding was further corroborated by quantitative measurements of mitochondrial membrane potential, oxygen consumption, and extracellular acidification rates, indicating nonreversal of ANT of compromised in situ neuronal and astrocytic mitochondria; and by bioluminescence ATP measurements in COS-7 cells transfected with cytosolic- or nuclear-targeted luciferases and treated with mitochondrial respiratory chain inhibitors in the presence of glycolytic plus mitochondrial vs. only mitochondrial substrates. Our findings imply the possibility of a rescue mechanism that is protecting against cytosolic/nuclear ATP depletion under pathological conditions involving impaired respiration. This mechanism comes into play when mitochondria respire on substrates that support matrix substrate-level phosphorylation.


Asunto(s)
Potencial de la Membrana Mitocondrial , Translocasas Mitocondriales de ADP y ATP/metabolismo , ATPasas de Translocación de Protón/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Células COS , Chlorocebus aethiops , Mitocondrias/metabolismo , Neuronas , Fosforilación , Conejos , Ratas , Ratas Sprague-Dawley , Termodinámica
18.
Biochim Biophys Acta Gen Subj ; 1865(6): 129889, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33684457

RESUMEN

BACKGROUND: The human mitochondrial alpha-ketoglutarate dehydrogenase complex (hKGDHc) converts KG to succinyl-CoA and NADH. Malfunction of and reactive oxygen species generation by the hKGDHc as well as its E1-E2 subcomplex are implicated in neurodegenerative disorders, ischemia-reperfusion injury, E3-deficiency and cancers. METHODS: We performed cryo-EM, cross-linking mass spectrometry (CL-MS) and molecular modeling analyses to determine the structure of the E2 component of the hKGDHc (hE2k); hE2k transfers a succinyl group to CoA and forms the structural core of hKGDHc. We also assessed the overall structure of the hKGDHc by negative-stain EM and modeling. RESULTS: We report the 2.9 Šresolution cryo-EM structure of the hE2k component. The cryo-EM map comprises density for hE2k residues 151-386 - the entire (inner) core catalytic domain plus a few additional residues -, while residues 1-150 are not observed due to the inherent flexibility of the N-terminal region. The structure of the latter segment was also determined by CL-MS and homology modeling. Negative-stain EM on in vitro assembled hKGDHc and previous data were used to build a putative overall structural model of the hKGDHc. CONCLUSIONS: The E2 core of the hKGDHc is composed of 24 hE2k chains organized in octahedral (8 × 3 type) assembly. Each lipoyl domain is oriented towards the core domain of an adjacent chain in the hE2k homotrimer. hE1k and hE3 are most likely tethered at the edges and faces, respectively, of the cubic hE2k assembly. GENERAL SIGNIFICANCE: The revealed structural information will support the future pharmacologically targeting of the hKGDHc.


Asunto(s)
Aciltransferasas/química , Aciltransferasas/metabolismo , Reactivos de Enlaces Cruzados/química , Microscopía por Crioelectrón/métodos , Complejo Cetoglutarato Deshidrogenasa/química , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Espectrometría de Masas/métodos , Acilcoenzima A/metabolismo , Humanos , Ácidos Cetoglutáricos/metabolismo , Modelos Moleculares , NAD/metabolismo , Conformación Proteica
19.
Brain Struct Funct ; 225(2): 639-667, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31982949

RESUMEN

The ketoglutarate dehydrogenase complex (KGDHC) consists of three different subunits encoded by OGDH (or OGDHL), DLST, and DLD, combined in different stoichiometries. DLD subunit is shared between KGDHC and pyruvate dehydrogenase complex, branched-chain alpha-keto acid dehydrogenase complex, and the glycine cleavage system. Despite KGDHC's implication in neurodegenerative diseases, cell-specific localization of its subunits in the adult human brain has never been investigated. Here, we show that immunoreactivity of all known isoforms of OGDHL, OGDH, and DLST was detected exclusively in neurons of surgical human cortical tissue samples identified by their morphology and visualized by double labeling with fluorescent Nissl, while being absent from glia expressing GFAP, Aldhl1, myelin basic protein, Olig2, or IBA1. In contrast, DLD immunoreactivity was evident in both neurons and glia. Specificity of anti-KGDHC subunits antisera was verified by a decrease in staining of siRNA-treated human cancer cell lines directed against the respective coding gene products; furthermore, immunoreactivity of KGDHC subunits in human fibroblasts co-localized > 99% with mitotracker orange, while western blotting of 63 post-mortem brain samples and purified recombinant proteins afforded further assurance regarding antisera monospecificity. KGDHC subunit immunoreactivity correlated with data from the Human Protein Atlas as well as RNA-Seq data from the Allen Brain Atlas corresponding to genes coding for KGDHC components. Protein lysine succinylation, however, was immunohistochemically evident in all cortical cells; this was unexpected, because this posttranslational modification requires succinyl-CoA, the product of KGDHC. In view of the fact that glia of the human brain cortex lack succinate-CoA ligase, an enzyme producing succinyl-CoA when operating in reverse, protein lysine succinylation in these cells must exclusively rely on propionate and/or ketone body metabolism or some other yet to be discovered pathway encompassing succinyl-CoA.


Asunto(s)
Acilcoenzima A/análisis , Corteza Cerebral/química , Complejo Cetoglutarato Deshidrogenasa/análisis , Lisina/análisis , Neuronas/química , Células Cultivadas , Femenino , Humanos , Masculino , Neuroglía/metabolismo , Isoformas de Proteínas/análisis , Subunidades de Proteína/análisis
20.
Biophys J ; 96(6): 2490-504, 2009 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-19289073

RESUMEN

A novel method exploiting the differential affinity of ADP and ATP to Mg(2+) was developed to measure mitochondrial ADP-ATP exchange rate. The rate of ATP appearing in the medium after addition of ADP to energized mitochondria, is calculated from the measured rate of change in free extramitochondrial [Mg(2+)] reported by the membrane-impermeable 5K(+) salt of the Mg(2+)-sensitive fluorescent indicator, Magnesium Green, using standard binding equations. The assay is designed such that the adenine nucleotide translocase (ANT) is the sole mediator of changes in [Mg(2+)] in the extramitochondrial volume, as a result of ADP-ATP exchange. We also provide data on the dependence of ATP efflux rate within the 6.8-7.8 matrix pH range as a function of membrane potential. Finally, by comparing the ATP-ADP steady-state exchange rate to the amount of the ANT in rat brain synaptic, brain nonsynaptic, heart and liver mitochondria, we provide molecular turnover numbers for the known ANT isotypes.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Mitocondrias/metabolismo , Translocasas Mitocondriales de ADP y ATP/metabolismo , Animales , Encéfalo/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Fluorescencia , Glicina/análogos & derivados , Concentración de Iones de Hidrógeno , Cinética , Hígado/metabolismo , Magnesio/metabolismo , Masculino , Potencial de la Membrana Mitocondrial , Mitocondrias Cardíacas/metabolismo , Mitocondrias Hepáticas/metabolismo , Membranas Mitocondriales/fisiología , Miocardio/metabolismo , Consumo de Oxígeno , Ratas , Ratas Sprague-Dawley , Sinapsis/metabolismo , Xantenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA