Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 24(6): 955-965, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37106039

RESUMEN

The B cell response to different pathogens uses tailored effector mechanisms and results in functionally specialized memory B (Bm) cell subsets, including CD21+ resting, CD21-CD27+ activated and CD21-CD27- Bm cells. The interrelatedness between these Bm cell subsets remains unknown. Here we showed that single severe acute respiratory syndrome coronavirus 2-specific Bm cell clones showed plasticity upon antigen rechallenge in previously exposed individuals. CD21- Bm cells were the predominant subsets during acute infection and early after severe acute respiratory syndrome coronavirus 2-specific immunization. At months 6 and 12 post-infection, CD21+ resting Bm cells were the major Bm cell subset in the circulation and were also detected in peripheral lymphoid organs, where they carried tissue residency markers. Tracking of individual B cell clones by B cell receptor sequencing revealed that previously fated Bm cell clones could redifferentiate upon antigen rechallenge into other Bm cell subsets, including CD21-CD27- Bm cells, demonstrating that single Bm cell clones can adopt functionally different trajectories.


Asunto(s)
Subgrupos de Linfocitos B , COVID-19 , Humanos , SARS-CoV-2 , Células B de Memoria , Linfocitos B
3.
Nature ; 602(7895): 148-155, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34875673

RESUMEN

Immunological memory is a hallmark of adaptive immunity and facilitates an accelerated and enhanced immune response upon re-infection with the same pathogen1,2. Since the outbreak of the ongoing COVID-19 pandemic, a key question has focused on which SARS-CoV-2-specific T cells stimulated during acute infection give rise to long-lived memory T cells3. Here, using spectral flow cytometry combined with cellular indexing of transcriptomes and T cell receptor sequencing, we longitudinally characterized individual SARS-CoV-2-specific CD8+ T cells of patients with COVID-19 from acute infection to 1 year into recovery and found a distinct signature identifying long-lived memory CD8+ T cells. SARS-CoV-2-specific memory CD8+ T cells persisting 1 year after acute infection express CD45RA, IL-7 receptor-α and T cell factor 1, but they maintain low expression of CCR7, thus resembling CD45RA+ effector memory T cells. Tracking individual clones of SARS-CoV-2-specific CD8+ T cells, we reveal that an interferon signature marks clones that give rise to long-lived cells, whereas prolonged proliferation and mechanistic target of rapamycin signalling are associated with clonal disappearance from the blood. Collectively, we describe a transcriptional signature that marks long-lived, circulating human memory CD8+ T cells following an acute viral infection.


Asunto(s)
Antígenos Virales/inmunología , Biomarcadores/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , COVID-19/inmunología , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , SARS-CoV-2/inmunología , Enfermedad Aguda , COVID-19/virología , Proliferación Celular , Células Clonales/citología , Células Clonales/inmunología , Humanos , Interferones/inmunología , Subunidad alfa del Receptor de Interleucina-7/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Estudios Longitudinales , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores CCR7/metabolismo , Factor 1 de Transcripción de Linfocitos T/metabolismo , Factores de Tiempo , Transcriptoma
4.
Mov Disord ; 39(6): 1043-1048, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38468604

RESUMEN

BACKGROUND: Progressive supranuclear palsy (PSP) is a rare 4R-tauopathy. Transcranial direct current stimulation (tDCS) may improve specific symptoms. OBJECTIVES: This randomized, double-blinded, sham-controlled trial aimed at verifying the short-, mid-, and long-term effect of multiple sessions of anodal tDCS over the left dorsolateral prefrontal cortex (DLPFC) cortex in PSP. METHODS: Twenty-five patients were randomly assigned to active or sham stimulation (2 mA for 20 minute) for 5 days/week for 2 weeks. Participants underwent assessments at baseline, after the 2-week stimulation protocol, then after 45 days and 3 months from baseline. Primary outcomes were verbal and semantic fluency. The efficacy was verified with analysis of covariance. RESULTS: We failed to detect a significant effect of active stimulation on primary outcomes. Stimulation was associated to worsening of specific behavioral complaints. CONCLUSIONS: A 2-week protocol of anodal left DLPFC tDCS is not effective in PSP. Specific challenges in running symptomatic clinical trials with classic design are highlighted. © 2024 International Parkinson and Movement Disorder Society.


Asunto(s)
Corteza Prefrontal , Parálisis Supranuclear Progresiva , Estimulación Transcraneal de Corriente Directa , Humanos , Parálisis Supranuclear Progresiva/terapia , Parálisis Supranuclear Progresiva/fisiopatología , Masculino , Femenino , Estimulación Transcraneal de Corriente Directa/métodos , Anciano , Persona de Mediana Edad , Método Doble Ciego , Corteza Prefrontal/fisiopatología , Resultado del Tratamiento , Corteza Prefontal Dorsolateral/fisiología
5.
Microb Cell Fact ; 22(1): 12, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36647076

RESUMEN

Microalgae are considered a suitable production platform for high-value lipids and oleochemicals. Several species including Nannochloropsis oceanica produce large amounts of essential [Formula: see text]-3 polyunsaturated fatty acids (PUFAs) which are integral components of food and feed and have been associated with health-promoting effects. N. oceanica can further accumulate high contents of non-polar lipids with chemical properties that render them a potential replacement for plant oils such as palm oil. However, biomass and lipid productivities obtained with microalgae need to be improved to reach commercial feasibility. Genetic engineering can improve biomass and lipid productivities, for instance by increasing carbon flux to lipids. Here, we report the overexpression of glycerol-3-phosphate acyltransferase (GPAT) in N. oceanica during favorable growth conditions as a strategy to increase non-polar lipid content. Transformants overproducing either an endogenous (NoGPAT) or a heterologous (Acutodesmus obliquus GPAT) GPAT enzyme targeted to the endoplasmic reticulum had up to 42% and 51% increased non-polar lipid contents, respectively, compared to the wild type. Biomass productivities of transformant strains were not substantially impaired, resulting in lipid productivities that were increased by up to 37% and 42% for NoGPAT and AoGPAT transformants, respectively. When exposed to nutrient stress, transformants and wild type had similar lipid contents, suggesting that GPAT enzyme exerts strong flux control on lipid synthesis in N. oceanica under favorable growth conditions. NoGPAT transformants further accumulated PUFAs in non-polar lipids, reaching a total of 6.8% PUFAs per biomass, an increase of 24% relative to the wild type. Overall, our results indicate that GPAT is an interesting target for engineering of lipid metabolism in microalgae, in order to improve non-polar lipid and PUFAs accumulation in microalgae.


Asunto(s)
Microalgas , Estramenopilos , Glicerol/metabolismo , Aceites/metabolismo , Ingeniería Genética , Glicerol-3-Fosfato O-Aciltransferasa/genética , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Estramenopilos/genética , Microalgas/genética , Microalgas/metabolismo , Biomasa , Fosfatos/metabolismo
6.
Allergy ; 77(8): 2468-2481, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35567391

RESUMEN

BACKGROUND: T-cell lymphopenia and functional impairment is a hallmark of severe acute coronavirus disease 2019 (COVID-19). How T-cell numbers and function evolve at later timepoints after clinical recovery remains poorly investigated. METHODS: We prospectively enrolled and longitudinally sampled 173 individuals with asymptomatic to critical COVID-19 and analyzed phenotypic and functional characteristics of T cells using flow cytometry, 40-parameter mass cytometry, targeted proteomics, and functional assays. RESULTS: The extensive T-cell lymphopenia observed particularly in patients with severe COVID-19 during acute infection had recovered 6 months after infection, which was accompanied by a normalization of functional T-cell responses to common viral antigens. We detected persisting CD4+ and CD8+ T-cell activation up to 12 months after infection, in patients with mild and severe COVID-19, as measured by increased HLA-DR and CD38 expression on these cells. Persistent T-cell activation after COVID-19 was independent of administration of a COVID-19 vaccine post-infection. Furthermore, we identified a subgroup of patients with severe COVID-19 that presented with persistently low CD8+ T-cell counts at follow-up and exhibited a distinct phenotype during acute infection consisting of a dysfunctional T-cell response and signs of excessive pro-inflammatory cytokine production. CONCLUSION: Our study suggests that T-cell numbers and function recover in most patients after COVID-19. However, we find evidence of persistent T-cell activation up to 12 months after infection and describe a subgroup of severe COVID-19 patients with persistently low CD8+ T-cell counts exhibiting a dysregulated immune response during acute infection.


Asunto(s)
COVID-19 , Linfopenia , Linfocitos T CD8-positivos , Vacunas contra la COVID-19 , Humanos , Linfopenia/etiología , Linfopenia/metabolismo , SARS-CoV-2
7.
Allergy ; 77(8): 2415-2430, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35364615

RESUMEN

BACKGROUND: Several autoimmune features occur during coronavirus disease 2019 (COVID-19), with possible implications for disease course, immunity, and autoimmune pathology. In this study, we longitudinally screened for clinically relevant systemic autoantibodies to assess their prevalence, temporal trajectory, and association with immunity, comorbidities, and severity of COVID-19. METHODS: We performed highly sensitive indirect immunofluorescence assays to detect antinuclear antibodies (ANA) and antineutrophil cytoplasmic antibodies (ANCA), along with serum proteomics and virome-wide serological profiling in a multicentric cohort of 175 COVID-19 patients followed up to 1 year after infection, eleven vaccinated individuals, and 41 unexposed controls. RESULTS: Compared with healthy controls, similar prevalence and patterns of ANA were present in patients during acute COVID-19 and recovery. However, the paired analysis revealed a subgroup of patients with transient presence of certain ANA patterns during acute COVID-19. Furthermore, patients with severe COVID-19 exhibited a high prevalence of ANCA during acute disease. These autoantibodies were quantitatively associated with higher SARS-CoV-2-specific antibody titers in COVID-19 patients and in vaccinated individuals, thus linking autoantibody production to increased antigen-specific humoral responses. Notably, the qualitative breadth of antibodies cross-reactive with other coronaviruses was comparable in ANA-positive and ANA-negative individuals during acute COVID-19. In autoantibody-positive patients, multiparametric characterization demonstrated an inflammatory signature during acute COVID-19 and alterations of the B-cell compartment after recovery. CONCLUSION: Highly sensitive indirect immunofluorescence assays revealed transient autoantibody production during acute SARS-CoV-2 infection, while the presence of autoantibodies in COVID-19 patients correlated with increased antiviral humoral immune responses and inflammatory immune signatures.


Asunto(s)
Autoanticuerpos , COVID-19 , Anticuerpos Anticitoplasma de Neutrófilos , Anticuerpos Antinucleares , Antivirales , Humanos , Inmunidad Humoral , SARS-CoV-2
8.
Connect Tissue Res ; 63(2): 97-111, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-31868022

RESUMEN

Introduction: With age, the number of adipocytes and osteoclasts increases, the number of osteoblasts decreases, and mechano-adaptation is impaired.Objectives: Using marrow aspiration, which has a known osteogenic effect in young mice, we sought to recruit osteoblast progenitors to mediate the mechano-adaptive response to in vivo tibial loading.Methods: First, we assessed bone formation and marrow adiposity in the tibiae of old mice (>20 months) sacrificed 1, 2, and 4 weeks after unilateral marrow aspiration. Then, we examined the effects of marrow aspiration on mechano-adaptation in aged mice using tibial loading.Results: Two weeks after aspiration, aspirated tibiae had more bone than contralateral tibiae due to the formation of bone in the medullary canal. Two weeks and four weeks after marrow aspiration, the volume of marrow adipose tissue was higher in the aspirated tibiae, compared to contralateral tibiae. Histomorphometry indicated that aspiration increased non-periosteal (endosteal, intracortical, intramedullary) bone formation, compared to the contralateral tibia.  Mice with marrow aspiration had reduced periosteal bone formation in the contralateral tibia, compared to mice that had loading alone. Loading-induced periosteal bone formation was higher in mice that had loading alone, compared to mice that had aspiration + loading, indicating that aspiration further reduced the mechano-adaptive response.Conclusion: These data demonstrate that, in old mice, bone forms in the medullary canal following aspiration. Adiposity is increased following marrow aspiration, and periosteal mechano-adaptation is reduced.


Asunto(s)
Médula Ósea , Osteogénesis , Tejido Adiposo , Animales , Ratones , Ratones Endogámicos C57BL , Osteogénesis/fisiología , Tibia
9.
J Allergy Clin Immunol ; 147(2): 545-557.e9, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33221383

RESUMEN

BACKGROUND: Whereas severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibody tests are increasingly being used to estimate the prevalence of SARS-CoV-2 infection, the determinants of these antibody responses remain unclear. OBJECTIVES: Our aim was to evaluate systemic and mucosal antibody responses toward SARS-CoV-2 in mild versus severe coronavirus disease 2019 (COVID-19) cases. METHODS: Using immunoassays specific for SARS-CoV-2 spike proteins, we determined SARS-CoV-2-specific IgA and IgG in sera and mucosal fluids of 2 cohorts, including SARS-CoV-2 PCR-positive patients (n = 64) and PCR-positive and PCR-negtive health care workers (n = 109). RESULTS: SARS-CoV-2-specific serum IgA titers in patients with mild COVID-19 were often transiently positive, whereas serum IgG titers remained negative or became positive 12 to 14 days after symptom onset. Conversely, patients with severe COVID-19 showed a highly significant increase of SARS-CoV-2-specific serum IgA and IgG titers after symptom onset. Very high titers of SARS-CoV-2-specific serum IgA were correlated with severe acute respiratory distress syndrome. Interestingly, some health care workers with negative SARS-CoV-2-specific serum antibody titers showed SARS-CoV-2-specific IgA in mucosal fluids with virus-neutralizing capacity in some cases. SARS-CoV-2-specific IgA titers in nasal fluids were inversely correlated with age. CONCLUSIONS: Systemic antibody production against SARS-CoV-2 develops mainly in patients with severe COVID-19, with very high IgA titers seen in patients with severe acute respiratory distress syndrome, whereas mild disease may be associated with transient production of SARS-CoV-2-specific antibodies but may stimulate mucosal SARS-CoV-2-specific IgA secretion.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Membrana Mucosa/inmunología , SARS-CoV-2/inmunología , Adulto , Anciano , Anticuerpos Antivirales/sangre , COVID-19/sangre , Femenino , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Saliva/inmunología , Índice de Severidad de la Enfermedad , Lágrimas/inmunología
10.
Metab Eng ; 66: 239-258, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33971293

RESUMEN

The microalga Nannochloropsis oceanica is considered a promising platform for the sustainable production of high-value lipids and biofuel feedstocks. However, current lipid yields of N. oceanica are too low for economic feasibility. Gaining fundamental insights into the lipid metabolism of N. oceanica could open up various possibilities for the optimization of this species through genetic engineering. Therefore, the aim of this study was to discover novel genes associated with an elevated neutral lipid content. We constructed an insertional mutagenesis library of N. oceanica, selected high lipid mutants by five rounds of fluorescence-activated cell sorting, and identified disrupted genes using a novel implementation of a rapid genotyping procedure. One particularly promising mutant (HLM23) was disrupted in a putative APETALA2-like transcription factor gene. HLM23 showed a 40%-increased neutral lipid content, increased photosynthetic performance, and no growth impairment. Furthermore, transcriptome analysis revealed an upregulation of genes related to plastidial fatty acid biosynthesis, glycolysis and the Calvin-Benson-Bassham cycle in HLM23. Insights gained in this work can be used in future genetic engineering strategies for increased lipid productivity of Nannochloropsis.


Asunto(s)
Microalgas , Estramenopilos , Biocombustibles , Lípidos/genética , Microalgas/genética , Mutagénesis Insercional , Estramenopilos/genética
11.
Allergy ; 76(9): 2866-2881, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33884644

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) is caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and shows a broad clinical presentation ranging from asymptomatic infection to fatal disease. A very prominent feature associated with severe COVID-19 is T cell lymphopenia. However, homeostatic and functional properties of T cells are ill-defined in COVID-19. METHODS: We prospectively enrolled individuals with mild and severe COVID-19 into our multicenter cohort and performed a cross-sectional analysis of phenotypic and functional characteristics of T cells using 40-parameter mass cytometry, flow cytometry, targeted proteomics, and functional assays. RESULTS: Compared with mild disease, we observed strong perturbations of peripheral T cell homeostasis and function in severe COVID-19. Individuals with severe COVID-19 showed T cell lymphopenia and redistribution of T cell populations, including loss of naïve T cells, skewing toward CD4+ T follicular helper cells and cytotoxic CD4+ T cells, and expansion of activated and exhausted T cells. Extensive T cell apoptosis was particularly evident with severe disease and T cell lymphopenia, which in turn was accompanied by impaired T cell responses to several common viral antigens. Patients with severe disease showed elevated interleukin-7 and increased T cell proliferation. Furthermore, patients sampled at late time points after symptom onset had higher T cell counts and improved antiviral T cell responses. CONCLUSION: Our study suggests that severe COVID-19 is characterized by extensive T cell dysfunction and T cell apoptosis, which is associated with signs of homeostatic T cell proliferation and T cell recovery.


Asunto(s)
COVID-19 , Estudios Transversales , Homeostasis , Humanos , Activación de Linfocitos , SARS-CoV-2
12.
Plant Biotechnol J ; 17(1): 75-87, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29754445

RESUMEN

Plant triterpenoids constitute a diverse class of organic compounds that play a major role in development, plant defence and environmental interaction. Several triterpenes have demonstrated potential as pharmaceuticals. One example is betulin, which has shown promise as a pharmaceutical precursor for the treatment of certain cancers and HIV. Major challenges for triterpenoid commercialization include their low production levels and their cost-effective purification from the complex mixtures present in their natural hosts. Therefore, attempts to produce these compounds in industrially relevant microbial systems such as bacteria and yeasts have attracted great interest. Here, we report the production of the triterpenes betulin and its precursor lupeol in the photosynthetic diatom Phaeodactylum tricornutum, a unicellular eukaryotic alga. This was achieved by introducing three plant enzymes in the microalga: a Lotus japonicus oxidosqualene cyclase and a Medicago truncatula cytochrome P450 along with its native reductase. The introduction of the L. japonicus oxidosqualene cyclase perturbed the mRNA expression levels of the native mevalonate and sterol biosynthesis pathway. The best performing strains were selected and grown in a 550-L pilot-scale photobioreactor facility. To our knowledge, this is the most extensive pathway engineering undertaken in a diatom and the first time that a sapogenin has been artificially produced in a microalga, demonstrating the feasibility of the photo-bio-production of more complex high-value, metabolites in microalgae.


Asunto(s)
Diatomeas/genética , Ingeniería Genética , Triterpenos Pentacíclicos/metabolismo , Terpenos/metabolismo , Triterpenos/metabolismo , Reactores Biológicos , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Diatomeas/metabolismo , Ingeniería Genética/métodos , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Lotus/enzimología , Lotus/genética , Medicago truncatula/enzimología , Medicago truncatula/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
13.
Proc Natl Acad Sci U S A ; 112(48): 14978-83, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26627249

RESUMEN

Photosynthetic microorganisms typically have multiple isoforms of the electron transfer protein ferredoxin, although we know little about their exact functions. Surprisingly, a Chlamydomonas reinhardtii mutant null for the ferredoxin-5 gene (FDX5) completely ceased growth in the dark, with both photosynthetic and respiratory functions severely compromised; growth in the light was unaffected. Thylakoid membranes in dark-maintained fdx5 mutant cells became severely disorganized concomitant with a marked decrease in the ratio of monogalactosyldiacylglycerol to digalactosyldiacylglycerol, major lipids in photosynthetic membranes, and the accumulation of triacylglycerol. Furthermore, FDX5 was shown to physically interact with the fatty acid desaturases CrΔ4FAD and CrFAD6, likely donating electrons for the desaturation of fatty acids that stabilize monogalactosyldiacylglycerol. Our results suggest that in photosynthetic organisms, specific redox reactions sustain dark metabolism, with little impact on daytime growth, likely reflecting the tailoring of electron carriers to unique intracellular metabolic circuits under these two very distinct redox conditions.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Ácido Graso Desaturasas/metabolismo , Ferredoxinas/metabolismo , Galactolípidos/metabolismo , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Chlamydomonas reinhardtii/genética , Ácido Graso Desaturasas/genética , Ferredoxinas/genética , Galactolípidos/genética , Oxidación-Reducción , Proteínas de Plantas/genética , Tilacoides/genética
14.
Plant Cell ; 26(11): 4499-518, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25381350

RESUMEN

Chlamydomonas reinhardtii insertion mutants disrupted for genes encoding acetate kinases (EC 2.7.2.1) (ACK1 and ACK2) and a phosphate acetyltransferase (EC 2.3.1.8) (PAT2, but not PAT1) were isolated to characterize fermentative acetate production. ACK1 and PAT2 were localized to chloroplasts, while ACK2 and PAT1 were shown to be in mitochondria. Characterization of the mutants showed that PAT2 and ACK1 activity in chloroplasts plays a dominant role (relative to ACK2 and PAT1 in mitochondria) in producing acetate under dark, anoxic conditions and, surprisingly, also suggested that Chlamydomonas has other pathways that generate acetate in the absence of ACK activity. We identified a number of proteins associated with alternative pathways for acetate production that are encoded on the Chlamydomonas genome. Furthermore, we observed that only modest alterations in the accumulation of fermentative products occurred in the ack1, ack2, and ack1 ack2 mutants, which contrasts with the substantial metabolite alterations described in strains devoid of other key fermentation enzymes.


Asunto(s)
Acetato Quinasa/metabolismo , Acetatos/metabolismo , Chlamydomonas reinhardtii/enzimología , Cloroplastos/metabolismo , Fosfato Acetiltransferasa/metabolismo , Acetato Quinasa/genética , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/genética , Fermentación , Mitocondrias/metabolismo , Mutagénesis Insercional , Fosfato Acetiltransferasa/genética
15.
J Natl Compr Canc Netw ; 13(6): 715-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26085387

RESUMEN

Langerhans cell histiocytosis (LCH) is a rare proliferative disease with a wide spectrum of clinical presentations and, as a consequence, the treatment choice is unclear. Recently, detection of the BRAF V600E mutation changed the perspective of this disease, suggesting a possible use for BRAF inhibitors in its treatment. Herein, a case is presented of a patient with LCH undergoing treatment with vemurafenib after several lines of therapy. After 4 months of vemurafenib treatment, skin lesions associated with cranial involvement were reduced in size at physical evaluation and nuclear imaging assessment showed a very good partial response, with the resolution of multiple lesions. Based on this very good partial response and because the patient tolerated treatment well, the patient was able to continue treatment with vemurafenib until disease progression nearly 10 months later. This approach should be considered for patients with severe and multiresistant LCH with a BRAF mutation. However, more studies are needed to evaluate the efficacy and duration of response in a larger patient population.


Asunto(s)
Antineoplásicos/uso terapéutico , Histiocitosis de Células de Langerhans/diagnóstico , Indoles/uso terapéutico , Sulfonamidas/uso terapéutico , Adulto , Antineoplásicos/farmacología , Femenino , Histiocitosis de Células de Langerhans/tratamiento farmacológico , Humanos , Indoles/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Sulfonamidas/farmacología , Resultado del Tratamiento , Vemurafenib
16.
Heliyon ; 10(7): e28723, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38596118

RESUMEN

Electrical impedance spectroscopy (EIS) stands as a widely employed characterization technique for studying muscular tissue in both physio/pathological conditions. This methodology commonly involves modeling tissues through equivalent electrical circuits, facilitating a correlation between electrical parameters and physiological properties. Within existing literature, diverse equivalent electrical circuits have been proposed, varying in complexity and fitting properties. However, to date, none have definitively proven to be the most suiTable for tissue impedance measurements. This study aims to outline a systematic methodology for EIS measurements and to compare the performances of three widely used electrical circuits in characterizing both physiological and pathological muscle tissue conditions. Results highlight that, for optimal fitting with electrical parameters relevant to tissue characterization, the choice of the circuit to be fitted closely hinges on the specific measurement objectives, including measurement parameters and associated physiological features. Naturally, this necessitates a balance between simplicity and fitting accuracy.

17.
Science ; 383(6680): eadg7942, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38236961

RESUMEN

Long Covid is a debilitating condition of unknown etiology. We performed multimodal proteomics analyses of blood serum from COVID-19 patients followed up to 12 months after confirmed severe acute respiratory syndrome coronavirus 2 infection. Analysis of >6500 proteins in 268 longitudinal samples revealed dysregulated activation of the complement system, an innate immune protection and homeostasis mechanism, in individuals experiencing Long Covid. Thus, active Long Covid was characterized by terminal complement system dysregulation and ongoing activation of the alternative and classical complement pathways, the latter associated with increased antibody titers against several herpesviruses possibly stimulating this pathway. Moreover, markers of hemolysis, tissue injury, platelet activation, and monocyte-platelet aggregates were increased in Long Covid. Machine learning confirmed complement and thromboinflammatory proteins as top biomarkers, warranting diagnostic and therapeutic interrogation of these systems.


Asunto(s)
Activación de Complemento , Proteínas del Sistema Complemento , Síndrome Post Agudo de COVID-19 , Proteoma , Tromboinflamación , Humanos , Proteínas del Sistema Complemento/análisis , Proteínas del Sistema Complemento/metabolismo , Síndrome Post Agudo de COVID-19/sangre , Síndrome Post Agudo de COVID-19/complicaciones , Síndrome Post Agudo de COVID-19/inmunología , Tromboinflamación/sangre , Tromboinflamación/inmunología , Biomarcadores/sangre , Proteómica , Masculino , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano
18.
Trends Biotechnol ; 41(3): 452-471, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36707271

RESUMEN

The urge for food security and sustainability has advanced the field of microalgal biotechnology. Microalgae are microorganisms able to grow using (sun)light, fertilizers, sugars, CO2, and seawater. They have high potential as a feedstock for food, feed, energy, and chemicals. Microalgae grow faster and have higher areal productivity than plant crops, without competing for agricultural land and with 100% efficiency uptake of fertilizers. In comparison with bacterial, fungal, and yeast single-cell protein production, based on hydrogen or sugar, microalgae show higher land-use efficiency. New insights are provided regarding the potential of microalgae replacing soy protein, fish oil, and palm oil and being used as cell factories in modern industrial biotechnology to produce designer feed, recombinant proteins, biopharmaceuticals, and vaccines.


Asunto(s)
Microalgas , Microalgas/genética , Microalgas/metabolismo , Fertilizantes , Biotecnología , Productos Agrícolas , Biomasa
19.
Bioresour Technol ; 367: 128239, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36332861

RESUMEN

Microalgae are considered an efficient accumulator and promising source of Se for feed additive purposes. This study aimed at investigating, for the first time, the effect of phosphorus limitation on Se accumulation and uptake efficiency in N.oceanica. A range of phosphorus concentrations (0-2470 µM) were tested in either the presence or absence of sodium selenite (0, 5, 30 µM). Se accumulation was increased up to 16-fold and Se uptake efficiency was increased up to 3.6-fold under phosphorus growth-limiting concentrations. N.oceanica was then cultivated in a 1.8L flat-panel photobioreactor in batch operation under two phosphorus growth-limiting concentrations (250 and 750 µM) where the accumulation of Se in the microalgal biomass, as well as its presence in the spent medium were analysed. This study is the first to investigate the effect of phosphorus limitation for increasing Se accumulation in microalgae, and to prevent the release of Se in wastewater.


Asunto(s)
Microalgas , Estramenopilos , Fósforo/farmacología , Fotobiorreactores , Biomasa
20.
Cell Host Microbe ; 31(6): 928-936.e4, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37236191

RESUMEN

Mpox represents a persistent health concern with varying disease severity. Reinfections with mpox virus (MPXV) are rare, possibly indicating effective memory responses to MPXV or related poxviruses, notably vaccinia virus (VACV) from smallpox vaccination. We assessed cross-reactive and virus-specific CD4+ and CD8+ T cells in healthy individuals and mpox convalescent donors. Cross-reactive T cells were most frequently observed in healthy donors over 45 years. Notably, long-lived memory CD8+ T cells targeting conserved VACV/MPXV epitopes were identified in older individuals more than four decades after VACV exposure and exhibited stem-like characteristics, defined by T cell factor-1 (TCF-1) expression. In mpox convalescent donors, MPXV-reactive CD4+ and CD8+ T cells were more prevalent than in controls, demonstrating enhanced functionality and skewing toward effector phenotypes, which correlated with milder disease. Collectively, we report robust effector memory MPXV-specific T cell responses in mild mpox and long-lived TCF-1+ VACV/MPXV-specific CD8+ T cells decades after smallpox vaccination.


Asunto(s)
Mpox , Poxviridae , Viruela , Humanos , Linfocitos T CD8-positivos , Mpox/metabolismo , Viruela/metabolismo , Virus Vaccinia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA