Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Equine Vet Sci ; 99: 103408, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33781432

RESUMEN

During transport, horses are subjected to acceleration in three dimensions, rapid braking, turning, noise, and other stressors. The animal's ability to make postural corrections may be insufficient to prevent injury or distress, and so knowledge of the compensatory motion patterns of the horse in the trailer is a necessary precondition for smart design of transport systems. A custom two-horse trailer was built for this project. It had a horse compartment 1.85 m wide by 3.95 m long, with adjustable bulkheads and a centre divider separating the horses. The floor was instrumented with 24 shearbeam load cells to measure the vertical load imposed by each horse and its horizontal motion. Two horses were driven on a 56 km trip on both rural and urban roads. Load data were collected at 100 Hz for the 58-minute trip and were filtered with a cut-off frequency of 5 Hz using a Butterworth low-pass filter and then vertical acceleration computed. A pivot table counted sign reversals in the vertical acceleration signal, and vertical displacement was calculated using the fundamental frequency of the resulting acceleration data. Total vertical motion was calculated by making the negative displacements absolute and summing these with the positive displacements, and vertical work done was calculated by multiplying the force by the displacement measures. Horizontal motion was calculated by averaging the transverse and cranio-caudal position of the centre of pressure every second and adding the resultant displacements. Absolute vertical displacement of the two horses was 69.55 m and 97.56 m. In addition to the work done by standing, vertical work done in response to vibration was 322.4 kJ and 443.2 kJ. Horizontal excursion was 227.1 m and 243.0 m. This is a first effort to quantify the additional workload imposed on animals during transport, which will aid in the design of smart transport vehicles that will minimize the stress to horses.


Asunto(s)
Aceleración , Vibración , Animales , Caballos , Movimiento (Física)
2.
Front Vet Sci ; 7: 577835, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195583

RESUMEN

Fibroproliferative disorders occur in both humans and horses following skin injury. In horses, wound healing on the limb is often complicated by the formation of fibroproliferative exuberant granulation tissue, characterized by persistent expression of pro-fibrotic transforming growth factor-beta1 (TGF-ß1) and deficient expression of anti-inflammatory interleukin-10 (IL-10). IL-10 has been shown to directly modulate fibrotic gene expression in human fibroblasts, so we hypothesized that equine IL-10 (eIL-10) may exert similar anti-fibrotic effects on equine dermal fibroblasts. Cell-lines were created from the limb skin of six individual horses. Recombinant eIL-10 was produced and purified, and its effects on the cells investigated in the presence and absence of equine TGF-ß1 (eTGF-ß1). Myofibroblast differentiation and collagen production were examined using immunofluorescent cytometry, cell contractility in a collagen gel assay, and fibrotic gene expression using quantitative PCR. In response to eTGF-ß1, fibroblasts increased in contractility and expression of alpha-smooth muscle actin, collagen types 1 and 3, and matrix metalloproteinase 1, 2, and 9. Equine IL-10 limited cell contractility and production of alpha-smooth muscle actin and type 3 collagen, and decreased mRNA levels of eCol3a1 and eMMP9, while increasing that of eMMP1. Opposing effects on eTGF-ßR3 and eIL-10R1 gene expression were also observed, with mRNA levels decreasing following eTGF-ß1 treatment, and increasing with eIL-10 treatment. These findings indicate that eIL-10 limits the pro-fibrotic effects of eTGF-ß1, potentially through the modulation of fibrotic and receptor gene expression. Further investigations are warranted to assess the therapeutic utility of eIL-10 in the treatment of exuberant granulation tissue.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA