Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 155(Pt B): 12-21, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37202276

RESUMEN

Thrombospondins (TSPs) are multidomain, calcium-binding glycoproteins that have wide-ranging roles in vertebrates in cell interactions, extracellular matrix (ECM) organisation, angiogenesis, tissue remodelling, synaptogenesis, and also in musculoskeletal and cardiovascular functions. Land animals encode five TSPs, which assembly co-translationally either as trimers (subgroup A) or pentamers (subgroup B). The vast majority of research has focused on this canonical TSP family, which evolved through the whole-genome duplications that took place early in the vertebrate lineage. With benefit of the growth in genome- and transcriptome-predicted proteomes of a much wider range of animal species, examination of TSPs throughout metazoan phyla has revealed extensive conservation of subgroup B-type TSPs in invertebrates. In addition, these searches established that canonical TSPs are, in fact, one branch within a TSP superfamily that includes other clades designated mega-TSPs, sushi-TSPs and poriferan-TSPs. Despite the apparent simplicity of poriferans and cnidarians as organisms, these phyla encode a greater diversity of TSP superfamily members than vertebrates. We discuss here the molecular characteristics of the TSP superfamily members, current knowledge of their expression profiles and functions in invertebrates, and models for the evolution of this complex ECM superfamily.


Asunto(s)
Invertebrados , Trombospondinas , Animales , Trombospondinas/genética , Trombospondinas/química , Trombospondinas/metabolismo , Invertebrados/genética , Evolución Molecular
2.
Am J Physiol Cell Physiol ; 324(5): C1179-C1197, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36912485

RESUMEN

The extracellular matrix (ECM) is central to the physiology of animal tissues, through its multifaceted roles in tissue structure, mechanical properties, and cell interactions, and by its cell-signaling activities that regulate cell phenotype and behavior. The secretion of ECM proteins typically involves multiple transport and processing steps within the endoplasmic reticulum and the subsequent compartments of the secretory pathway. Many ECM proteins are substituted with various posttranslational modifications (PTMs) and there is increasing evidence of how PTM additions are required for ECM protein secretion or functionality within the extracellular milieu. The targeting of PTM-addition steps may thus offer opportunities to manipulate ECM quality or quantity, in vitro or in vivo. This review discusses selected examples of PTMs of ECM proteins for which the PTM has known importance for anterograde trafficking and secretion of the core protein, and/or loss-of-function of the respectively modifying enzyme leads to alterations of ECM structure or function with pathophysiological consequences in humans. Members of the protein disulfide isomerase (PDI) family have central roles in disulfide bond formation and isomerization within the endoplasmic reticulum, and are discussed in relation to emerging knowledge of the roles of certain PDIs in ECM production in the pathophysiological context of breast cancer. Cumulative data suggest the possible applicability of inhibition of PDIA3 activity to modulate ECM composition and functionality within the tumor microenvironment.


Asunto(s)
Neoplasias de la Mama , Matriz Extracelular , Animales , Humanos , Femenino , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Neoplasias de la Mama/metabolismo , Procesamiento Proteico-Postraduccional , Microambiente Tumoral
3.
Am J Physiol Cell Physiol ; 324(1): C113-C132, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36374169

RESUMEN

Metastasis and recurrence of breast cancer remain major causes of patient mortality, and there is an ongoing need to identify new therapeutic targets relevant to tumor invasion. Protein disulfide isomerase A3 (PDIA3) is a disulfide oxidoreductase and isomerase of the endoplasmic reticulum that has known extracellular substrates and has been correlated with aggressive breast cancers. We show that either prior PDIA3 inhibition by the disulfide isomerase inhibitor 16F16 or depletion of heparin-binding proteins strongly reduces the activity of conditioned medium (CM) of MDA-MB-231 human breast cancer cells to support promigratory cell spreading and F-actin organization by newly adherent MDA-MB-231 cells. Quantitative proteomics to investigate effects of 16F16 inhibition on heparin-binding proteins in the CM of MDA-MB-231 cells identified 80 proteins reproducibly decreased at least twofold (at q ≤ 0.05) after 16F16 treatment. By Gene Ontology analysis, many of these have roles in extracellular matrix (ECM) structure and function and cell adhesion; ribosomal proteins that also correlate with extracellular vesicles were also identified. Protein-protein interaction analysis showed that many of the extracellular proteins have known network interactions with each other. The predominant types of disulfide-bonded domains in the extracellular proteins contained ß-hairpin folds, with the knottin fold the most common. From human breast cancer data sets, the extracellular proteins were found to correlate specifically with the basal subtype of breast cancer and their high expression in tumors correlated with reduced distant metastasis-free survival. These data provide new evidence that PDIA3 may be a relevant therapeutic target to alter properties of the ECM-associated microenvironment in basal breast cancer.


Asunto(s)
Neoplasias de la Mama , Proteína Disulfuro Isomerasas , Humanos , Femenino , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Proteína Disulfuro Isomerasas/farmacología , Neoplasias de la Mama/patología , Adhesión Celular , Comunicación Celular , Heparina/farmacología , Línea Celular Tumoral , Microambiente Tumoral
4.
Am J Physiol Cell Physiol ; 322(4): C624-C644, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35196163

RESUMEN

The matricellular glycoprotein thrombospondin-1 (TSP1) has complex roles in the extracellular matrix (ECM) and at cell surfaces, but relatively little is known about its intracellular associations prior to secretion. To search for novel intracellular interactions of TSP1 in situ, we carried out a biotin ligase-based TSP1 interactome screen and identified protein disulfide isomerase A3 (PDIA3/ERp57) as a novel candidate binding protein. In validation, TSP1 and PDIA3 were established to bind in vitro and to colocalize in the endoplasmic reticulum of human dermal fibroblasts (HDF). Loss of PDIA3 function, either by pharmacological inhibition in HDF or in Pdia3-/- mouse embryo fibroblasts (Pdia3-/- MEFs), led to alterations in the composition of cell-derived extracellular matrix, involving changed abundance of fibronectin and TSP1, was correlated with reduced cell spreading, altered organization of F-actin, and reduced focal adhesions. These cellular phenotypes of Pdia3-/- MEFs were normalized by exposure to conditioned medium (WTCM) or extracellular matrix (WTECM) from wild-type (WT)-MEFs. Rescue depended on PDIA3 activity in WT-MEFs and was not prevented by immunodepletion of fibronectin. Heparin-binding proteins in WTCM were found to be necessary for rescue. Comparative quantitative tandem-mass-tag proteomics and functional assays on the heparin-binding secretomes of WT-MEFs and Pdia3-/- MEFs identified multiple ECM and growth factor proteins to be downregulated in the CM of Pdia3-/- MEFs. Of these, cell communication network 2 (CCN2) was identified to be necessary for the adhesion-promoting activity of WTCM on Pdia3-/- MEFs and to bind TSP1. Thus, PDIA3 coordinates fibroblast production of an ECM-rich, proadhesive microenvironment, with implications for PDIA3 as a translational target.


Asunto(s)
Fibronectinas , Proteína Disulfuro Isomerasas , Animales , Comunicación Celular , Células Cultivadas , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Heparina , Ratones , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Secretoma
5.
Am J Physiol Cell Physiol ; 321(5): C826-C845, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34495764

RESUMEN

Thrombospondins (TSPs) are multidomain, secreted proteins that associate with cell surfaces and extracellular matrix. In mammals, there is a large body of data on functional roles of various TSP family members in cardiovascular disease (CVD), including stroke, cardiac remodeling and fibrosis, atherosclerosis, and aortic aneurysms. Coding single nucleotide polymorphisms (SNPs) of TSP1 or TSP4 are also associated with increased risk of several forms of CVD. Whereas interactions and functional effects of TSPs on a variety of cell types have been studied extensively, the molecular and cellular basis for the differential effects of the SNPs remains under investigation. Here, we provide an integrative review on TSPs, their roles in CVD and cardiovascular cell physiology, and known properties and mechanisms of TSP SNPs relevant to CVD. In considering recent expansions to knowledge of the fundamental cellular roles and mechanisms of TSPs, as well as the effects of wild-type and variant TSPs on cells of the cardiovascular system, we aim to highlight knowledge gaps and areas for future research or of translational potential.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Trombospondinas/metabolismo , Animales , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/fisiopatología , Sistema Cardiovascular/patología , Sistema Cardiovascular/fisiopatología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Transducción de Señal , Trombospondinas/genética
6.
Mol Biol Evol ; 36(6): 1220-1238, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30863851

RESUMEN

Extracellular matrix (ECM) is considered central to the evolution of metazoan multicellularity; however, the repertoire of ECM proteins in nonbilaterians remains unclear. Thrombospondins (TSPs) are known to be well conserved from cnidarians to vertebrates, yet to date have been considered a unique family, principally studied for matricellular functions in vertebrates. Through searches utilizing the highly conserved C-terminal region of TSPs, we identify undisclosed new families of TSP-related proteins in metazoans, designated mega-TSP, sushi-TSP, and poriferan-TSP, each with a distinctive phylogenetic distribution. These proteins share the TSP C-terminal region domain architecture, as determined by domain composition and analysis of molecular models against known structures. Mega-TSPs, the only form identified in ctenophores, are typically >2,700 aa and are also characterized by N-terminal leucine-rich repeats and central cadherin/immunoglobulin domains. In cnidarians, which have a well-defined ECM, Mega-TSP was expressed throughout embryogenesis in Nematostella vectensis, with dynamic endodermal expression in larvae and primary polyps and widespread ectodermal expression in adult Nematostella vectensis and Hydra magnipapillata polyps. Hydra Mega-TSP was also expressed during regeneration and siRNA-silencing of Mega-TSP in Hydra caused specific blockade of head regeneration. Molecular phylogenetic analyses based on the conserved TSP C-terminal region identified each of the TSP-related groups to form clades distinct from the canonical TSPs. We discuss models for the evolution of the newly defined TSP superfamily by gene duplications, radiation, and gene losses from a debut in the last metazoan common ancestor. Together, the data provide new insight into the evolution of ECM and tissue organization in metazoans.


Asunto(s)
Evolución Biológica , Invertebrados/genética , Trombospondinas/genética , Animales , Antozoos/genética , Antozoos/metabolismo , Hydra/fisiología , Familia de Multigenes , Trombospondinas/metabolismo
8.
Bioessays ; 38(1): 77-88, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26735930

RESUMEN

In metazoans, the extracellular matrix (ECM) provides a dynamic, heterogeneous microenvironment that has important supportive and instructive roles. Although the primary site of action of ECM proteins is extracellular, evidence is emerging for non-canonical intracellular roles. Examples include osteopontin, thrombospondins, IGF-binding protein 3 and biglycan, and relate to roles in transcription, cell-stress responses, autophagy and cancer. These findings pose conceptual problems on how proteins signalled for secretion can be routed to the cytosol or nucleus, or can function in environments with diverse redox, pH and ionic conditions. We review evidence for intracellular locations and functions of ECM proteins, and current knowledge of the mechanisms by which they may enter intracellular compartments. We evaluate the experimental methods that are appropriate to obtain rigorous evidence for intracellular localisation and function. Better insight into this under-researched topic is needed to decipher the complete spectrum of physiological and pathological roles of ECM proteins.


Asunto(s)
Compartimento Celular/genética , Núcleo Celular/genética , Microambiente Celular/genética , Proteínas de la Matriz Extracelular/genética , Biglicano/genética , Matriz Extracelular/genética , Humanos , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Neoplasias/genética , Osteopontina/genética , Transporte de Proteínas/genética , Trombospondinas/genética
11.
BMC Evol Biol ; 15: 281, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26667623

RESUMEN

BACKGROUND: Collagens provide structural support and guidance cues within the extracellular matrix of metazoans. Mammalian collagens XIII, XXIII and XXV form a unique subgroup of type II transmembrane proteins, each comprising a short N-terminal cytosolic domain, a transmembrane domain and a largely collagenous ectodomain. We name these collagens as MACITs (Membrane-Associated Collagens with Interrupted Triple-helices), and here investigate their evolution and conserved properties. To date, these collagens have been studied only in mammals. Knowledge of the representation of MACITs in other extant metazoans is lacking. This question is of interest for understanding structural/functional relationships in the MACIT family and also for insight into the evolution of MACITs in relation to the secreted, fibrillar collagens that are present throughout the metazoa. RESULTS: MACITs are restricted to bilaterians and are represented in the Ecdysozoa, Hemichordata, Urochordata and Vertebrata (Gnathostomata). They were not identified in available early-diverging metazoans, Lophotrochozoa, Echinodermata, Cephalochordata or Vertebrata (Cyclostomata). Whereas invertebrates encode a single MACIT, collagens XIII/XXIII/XXV of jawed vertebrates are paralogues that originated from the two rounds of en-bloc genome duplication occurring early in vertebrate evolution. MACITs have conserved domain architecture in which a juxta-membrane furin-cleavage site and the C-terminal 34 residues are especially highly conserved, whereas the cytoplasmic domains are weakly conserved. To study protein expression and function in a metazoan with a single MACIT gene, we focused on Caenorhabditis elegans and its col-99 gene. A col-99 cDNA was cloned and expressed as protein in mammalian CHO cells, two antibodies against COL-99 protein were generated, and a col-99-bearing fosmid gene construct col-99::egfp::flag was used to generate transgenic C. elegans lines. The encoded COL-99 polypeptide is 85 kDa in size and forms a trimeric protein. COL-99 is plasma membrane-associated and undergoes furin-dependent ectodomain cleavage and shedding. COL-99 is detected in mouth, pharynx, body wall and the tail, mostly in motor neurons and muscle systems and is enriched at neuromuscular junctions. CONCLUSIONS: Through identification of MACITs in multiple metazoan phyla we developed a model for the evolution of MACITs. The experimental data demonstrate conservation of MACIT molecular and cellular properties and tissue localisations in the invertebrate, C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Colágeno/genética , Evolución Molecular , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Células CHO , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Colágeno/química , Colágeno/metabolismo , Cricetinae , Cricetulus , Larva/metabolismo , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia
17.
BMC Med ; 11: 52, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23442983

RESUMEN

BACKGROUND: Fascin-1 is an actin-bundling protein expressed in many human carcinomas, although absent from most normal epithelia. Fascin-1 promotes filopodia formation, migration and invasion in carcinoma cells; in mouse xenograft tumor models it contributes to metastasis. Fascin-1 is an interesting candidate biomarker for aggressive, metastatic carcinomas but data from individual studies of human tumors have not yet been pooled systematically. METHODS: This systematic review was conducted in accordance with PRISMA guidelines, using fixed and random effects models, as appropriate, to undertake meta-analysis. RESULTS: A total of 26 immunohistochemical studies of 5 prevalent human carcinomas were identified for meta-analysis. Fascin-1 was associated with increased risk of mortality for breast (pooled hazard ratio, (HR) = 2.58; 95% confidence interval (CI) 1.48 to 4.52; P = 0.001), colorectal (HR = 1.60 (1.37 to 1.86; P <0.001) and esophageal carcinomas (HR = 1.35; CI 1.13 to 1.60; P = 0.001). There was no evidence of association of fascin-1 with mortality in gastric and lung carcinomas. Fascin-1 was associated with increased risk of disease progression in breast (HR = 2.48; CI 1.38 to 4.46; P = 0.002) and colorectal carcinomas (HR = 2.12; CI 1.00 to 4.47; P = 0.05), but not with progression of lung carcinomas (HR = 0.95; CI 0.49 to 1.85; P = 0.9). Fascin-1 was associated with increased risk of lymph node metastasis in colorectal (pooled risk ratio (RR) = 1.47; CI 1.26 to 1.71; P <0.001) and gastric carcinomas (RR = 1.43; CI 1.21 to 1.70; P <0.001). There was no evidence of association of fascin-1 with lymph node metastasis in lung or esophageal carcinomas. Fascin-1 was associated with increased risk of distant metastasis in colorectal (RR = 1.70; CI 1.18 to 2.45; P = 0.004) and gastric carcinomas (RR = 1.93; CI 1.21 to 3.33; P = 0.02). No association with distant metastasis in esophageal carcinomas was observed. Pooling across all the carcinomas provided strong evidence for association of fascin-1 with increased risk of mortality (HR = 1.44; CI 1.24 to 1.68; P <0.001; n = 3,645), lymph node metastasis (RR = 1.36; CI 1.18 to 1.55; P <0.001; n = 2,906) and distant metastasis (1.76; 1.34 to 2.32; P <0.001; n = 1,514). CONCLUSIONS: Fascin-1 is associated consistently with increased risk of mortality in breast, colorectal and esophageal carcinomas and with metastasis in colorectal and gastric carcinomas. The results were stable to various sensitivity analyses and did not vary by predefined subgroups. These data will assist rational decision making for focusing investigations of fascin-1 as a biomarker or therapeutic target onto the most relevant carcinomas.


Asunto(s)
Biomarcadores/análisis , Carcinoma/diagnóstico , Carcinoma/patología , Proteínas Portadoras/análisis , Proteínas de Microfilamentos/análisis , Metástasis de la Neoplasia/diagnóstico , Metástasis de la Neoplasia/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma/secundario , Progresión de la Enfermedad , Femenino , Humanos , Inmunohistoquímica/métodos , Masculino , Persona de Mediana Edad , Adulto Joven
19.
BMC Biol ; 10: 72, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22883572

RESUMEN

BACKGROUND: Fascin-1 is an actin crosslinking protein that is important for the assembly of cell protrusions in neurons, skeletal and smooth muscle, fibroblasts, and dendritic cells. Although absent from most normal adult epithelia, fascin-1 is upregulated in many human carcinomas, and is associated with poor prognosis because of its promotion of carcinoma cell migration, invasion, and metastasis. Rac and Cdc42 small guanine triphosphatases have been identified as upstream regulators of the association of fascin-1 with actin, but the possible role of Rho has remained obscure. Additionally, experiments have been hampered by the inability to measure the fascin-1/actin interaction directly in intact cells. We investigated the hypothesis that fascin-1 is a functional target of Rho in normal and carcinoma cells, using experimental approaches that included a novel fluorescence resonance energy transfer (FRET)/fluorescence lifetime imaging (FLIM) method to measure the interaction of fascin-1 with actin. RESULTS: Rho activity modulates the interaction of fascin-1 with actin, as detected by a novel FRET method, in skeletal myoblasts and human colon carcinoma cells. Mechanistically, Rho regulation depends on Rho kinase activity, is independent of the status of myosin II activity, and is not mediated by promotion of the fascin/PKC complex. The p-Lin-11/Isl-1/Mec-3 kinases (LIMK), LIMK1 and LIMK2, act downstream of Rho kinases as novel binding partners of fascin-1, and this complex regulates the stability of filopodia. CONCLUSIONS: We have identified a novel activity of Rho in promoting a complex between fascin-1 and LIMK1/2 that modulates the interaction of fascin-1 with actin. These data provide new mechanistic insight into the intracellular coordination of contractile and protrusive actin-based structures. During the course of the study, we developed a novel FRET method for analysis of the fascin-1/actin interaction, with potential general applicability for analyzing the activities of actin-binding proteins in intact cells.


Asunto(s)
Actinas/metabolismo , Proteínas Portadoras/metabolismo , Quinasas Lim/metabolismo , Proteínas de Microfilamentos/metabolismo , Seudópodos/metabolismo , Transducción de Señal , Proteína de Unión al GTP rhoA/metabolismo , Animales , Línea Celular , Movimiento Celular , Activación Enzimática , Transferencia Resonante de Energía de Fluorescencia , Humanos , Isoenzimas/metabolismo , Ratones , Microscopía Confocal , Modelos Biológicos , Miosinas/metabolismo , Unión Proteica , Proteína Quinasa C/metabolismo , Imagen de Lapso de Tiempo , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/antagonistas & inhibidores
20.
mSystems ; 8(5): e0066323, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37623321

RESUMEN

IMPORTANCE: Bacteria adapt to changing environments by altering the transcription of their genes. Specific proteins can regulate these changes. This study explored how a single protein called RpoS controls how many genes change expression during adaptation to three stresses. We found that: (i) RpoS is responsible for activating different genes in different stresses; (ii) that during a stress, the timing of gene activation depends on the what stress it is; and (iii) that how much RpoS a gene needs in order to be activated can predict when that gene will be activated during the stress of stationary phase.


Asunto(s)
Escherichia coli K12 , Proteínas de Escherichia coli , Escherichia coli/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas Bacterianas/genética , Factor sigma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA