Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Am Chem Soc ; 146(29): 20300-20311, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39005055

RESUMEN

Lead halide perovskite nanocrystals have been extensively studied in recent years as efficient optical materials for their bright and color-tunable emissions. However, these are mostly confined to their 3D nanocrystals and limited to the anisotropic nanostructures. By exploring the Cs-sublattice-induced metal(II) ion exchange with Pb(II), crack CsPbBr3 perovskite platelet nanocrystals having polar surfaces in all three directions are reported here, which remained different than reported standard square platelets. The crack platelets are also passivated with halides to enhance their brightness. Further, as these crack and passivated crack platelets have defects and polar surfaces, the exciton and biexciton generation in these platelets is investigated using femtosecond photoluminescence and transient absorption measurement at ambient as well as cryogenic temperatures, correlated with time-resolved single-particle photoluminescence spectroscopy, and compared with standard square platelets having nonpolar facets. These investigations revealed that the crack platelets and passivated crack platelets possess enhanced biexciton emission compared to square platelets due to the presence of polar surfaces in all three directions. These results provide insights into not only the design of the anisotropic nanostructures of ionic nanocrystals but also the possibility of tuning the single exciton to biexciton generation efficiency, which has potential applications in optoelectronic systems.

2.
Phys Rev Lett ; 132(6): 063803, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38394562

RESUMEN

Superfluorescence, a cooperative coherent spontaneous emission, is of great importance to the understanding of many-body correlation in optical processes. Even though superfluorescence has been demonstrated in many diverse systems, it is hard to observe in electron-hole plasma (EHP) due to its rapid dephasing and hence needs strong magnetic fields or complex microcavities. Herein, we report the first experimental observation of superfluorescence from EHP up to a moderate temperature of 175 K without external stimuli in a coupled metal halide perovskite quantum dots film. The EHP exhibits macroscopic quantum coherence through spontaneous synchronization. The coherence of the excited state decays by superfluorescence, which is redshifted 40 meV from the spontaneous emission with a ∼1700 times faster decay rate and exhibits quadratic fluence dependence. Notably, the excited state population's delayed growth and abrupt decay, which are strongly influenced by the pump fluence and the Burnham-Chiao ringing, are the characteristics of the superfluorescence. Our findings will open up a new frontier for cooperative emission and light beam-based technologies.

3.
Nano Lett ; 22(22): 8908-8916, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36318695

RESUMEN

Auger recombination and thermalization time are detrimental in reducing the gain threshold of optically pumped semiconductor nanocrystal (NC) lasers for future on-chip nanophotonic devices. Here, we report the design strategy of facet engineering to reduce the gain threshold of amplified spontaneous emission by manyfold in NCs of the same concentration and edge length. We achieved this hallmark result by controlling the Auger recombination rates dominated by processes involving NC volume and thermalization time to the emitting states by optimizing the number of facets from 6 (cube) to 12 (rhombic dodecahedron) and 26 (rhombicuboctahedrons) in CsPbBr3 NCs. For instance, we demonstrate a 2-fold reduction in Auger recombination rates and thermalization time with increased number of facets. The gain threshold can be further reduced ∼50% by decreasing the sample temperature to 4 K. Our systematic studies offer a new method to reduce the gain threshold that ultimately forms the basis of nanolasers.

4.
Nano Lett ; 22(2): 808-814, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34990139

RESUMEN

Nonresonant optical driving of confined semiconductors can open up exciting opportunities for experimentally realizing strongly interacting photon-dressed (Floquet) states through the optical Stark effect (OSE) for coherent modulation of the exciton state. Here we report the first room-temperature observation of the Floquet biexciton-mediated anomalous coherent excitonic OSE in CsPbBr3 quantum dots (QDs). Remarkably, the strong exciton-biexciton interaction leads to a coherent red shift and splitting of the exciton resonance as a function of the drive photon frequency, similar to Autler-Townes splitting in atomic and molecular systems. The large biexciton binding energy of ∼71 meV and exciton-biexciton transition dipole moment of ∼25 D facilitate the hallmark observations, even at large detuning energies of >300 meV. This is accompanied by an unusual crossover from linear to nonlinear fluence dependence of the OSE as a function of the drive photon frequency. Our findings reveal crucial information on the unexplored many-body coherent interacting regime, making perovskite QDs suitable for room temperature quantum devices.

5.
Opt Lett ; 47(19): 5196-5199, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181220

RESUMEN

In this Letter, we report the third-order absorptive and refractive nonlinear optical response of highly luminescent WS2 quantum dots (QDs) in the off-resonant femtosecond and nanosecond pulses, which is beneficial for optical limiting and quantum information processing. For 800 nm femtosecond excitation, QDs show two-photon absorption (ß = (107 ± 2)×10-3 cm/GW) with positive nonlinearity originating from bound carriers. This picture changes significantly for 532 nm nanosecond excitation, where it shows reverse saturable absorption with negative nonlinearity primarily originating from the sequential absorption of two single photons through the shallow defects, creating free carriers. Our results provide a promising route toward low-dimensional optoelectronic devices.

6.
Opt Lett ; 46(23): 5930-5933, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34851926

RESUMEN

In this Letter, we demonstrate for the first time, to the best of our knowledge, NiCo2O4 (NCO) as a novel nonlinear optical material with straightforward potential applications in optical limiting. For the 532 nm nanosecond laser, excited state absorption (ESA) and free-carrier absorption give rise to large ESA coefficient (ßESA) and positive nonlinear n2. On the other hand, when excited with the 800 nm femtosecond laser, two-photon absorption (TPA) takes place, and bound carriers induce strong negative n2. The values of ß and n2 obtained for NCO are found to be higher compared to other conventional transition metal oxides and, therefore, are promising for optics and other photonics applications.

7.
Opt Lett ; 45(24): 6655-6658, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33325863

RESUMEN

In this Letter, we report for the first time, to the best of our knowledge, the anisotropic optical response in a graphene oxide (GO)-gold (Au) nanohybrid. Polarization-sensitive nonlinear optical absorption measurements revealed that nanohybrids are highly anisotropic, (ß⊥-ß‖)≈28cm/GW, which is more than one order of magnitude higher than that of control GO (2 cm/GW). The first-principle analysis of absorbance at nanohybrid interfaces with varying functional ligand concentrations corroborates with the experimentally observed intrinsic linear anisotropy. Thus, this Letter enables new routes to realize smart and high-performing nonlinear optical systems selectively and directionally such as tunable optical limiters and optical data processing devices.

8.
Phys Chem Chem Phys ; 22(28): 16314-16324, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32647839

RESUMEN

A higher superconducting critical temperature and large-area epsilon-near-zero systems are two long-standing goals of the scientific community, having an explicit relationship with the correlated electrons in localized orbitals. Motivated by the recent experimental findings of the strongly correlated phenomena in nanostructures of simple Drude metallic systems, we have theoretically investigated some potential bimetallic FCC combinations having close resemblance with the experimental systems. The explored systems include the large-area interface to the embedded and doped two-dimensional (2D) combinatorial nanostructures. Using different effective single-particle first-principles approaches encompassing density functional theory (DFT), time-dependent DFT (TDDFT), phonon and DFT-coupled quantum transport, we propose some interesting correlated prospects of potential bimetallic nanostructures like Au/Ag and Pt/Pd. For the 2D doped and embedded nanostructures of these systems, the DFT-calculated non-trivial band-structures indicate the interfacial morphology-induced band localization. The calculated Fermi-surface topology of the nanostructures and the corresponding nesting behavior may be emblematic to the presence of instabilities, such as charge density waves. The optical attributes extracted from the TDDFT calculations result in near-zero behavior of both real and imaginary parts of the dynamical dielectric response in the ultra-violet to visible (UV-Vis) optical range. In addition, low-energy intra-band plasmonic oscillations, as present for individual metallic surfaces, are completely suppressed for the embedded and doped nanostructures. The TDDFT-derived electron-energy loss spectra manifest the survival of only inter-band transitions. The presence of soft phonons and dynamic instabilities is observed from the phonon-dispersion of the nanostructured systems. Quantum transport calculations on the simplest possible device made out of these bimetallic systems reveal the generation of highly transmitting pockets over the cross-sectional area for some selected device geometry. We envisage that, if scrutinized experimentally, such systems may unveil many fascinating interdisciplinary aspects of orbital chemistry, physics and optics, promoting their relevant applications in many diverse fields.

9.
Opt Lett ; 44(12): 3134-3137, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31199399

RESUMEN

Highly reproducible and precisely controlled gradual variation in optical reflectivity or electrical resistance between amorphous and crystalline phases of phase change (PC) material is a key requirement for multilevel programming. Here we report high-contrast multilevel set and reset operations through accumulative switching in growth-dominated AgInSbTe PC material using a nanosecond laser-based pump-probe technique. The precise tuning of fractions of crystallized or re-amorphized region is achieved by means of controlling the number of irradiated laser pulses enabling six stable multilevels with high-reflectivity contrast of 2% between any two states. Furthermore, Raman spectra of irradiated spots validate the structural changes involved during multilevel switching between amorphous and crystalline phases.

10.
Opt Lett ; 43(19): 4787-4790, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30272740

RESUMEN

We study experimentally and theoretically the intensity-dependent off-resonant ultrafast third-order nonlinear optical response of As2S2 thin films. At low intensity, we observed saturable absorption with a negative (self-defocusing) nonlinear refractive index (n2) which at higher intensity switched over to reverse saturable absorption with a change in the sign of n2 to positive (self-focusing). Our findings constitute compelling evidence on how to dynamically tune the optical response with the intensity that has its origin in the combined effect of two-photon absorption and Pauli blocking. The results were explained with the help of time-resolved measurements and rigorous theoretical and numerical simulations.

11.
Appl Opt ; 57(2): 178-184, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29328161

RESUMEN

Rapid and reversible switching between amorphous and crystalline phases of phase-change material promises to revolutionize the field of information processing with a wide range of applications including electronic, optoelectronics, and photonic memory devices. However, achieving faster crystallization is a key challenge. Here, we demonstrate femtosecond-driven transient inspection of ultrafast crystallization of as-deposited amorphous Ge1Sb2Te4 and Ge1Sb4Te7 thin films induced by a series of 120 fs laser pulses. The snapshots of phase transitions are correlated with the time-resolved measurements of change in the absorption of the samples. The crystallization is attributed to the reiterative excitation of an intermediate state with subcritical nuclei at a strikingly low fluence of 3.19 mJ/cm2 for Ge1Sb2Te4 and 1.59 mJ/cm2 for Ge1Sb4Te7. Furthermore, 100% volumetric crystallization of Ge1Sb4Te7 was achieved with the fluence of 4.78 mJ/cm2, and also reamorphization is seen for a continuous stimulation at the same repetition rate and fluence. A systematic confirmation of structural transformations of all samples is validated by Raman spectroscopic measurements on the spots produced by the various excitation fluences.

13.
Opt Lett ; 42(17): 3291-3294, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957086

RESUMEN

In this Letter, we demonstrate for the first time that anisotropy can be induced at ultrafast time scales in an otherwise isotropic a-GeSe2 thin film using polarized femtosecond light. This photoinduced anisotropy (PA) spans the bandgap to the sub-bandgap region and self-annihilates over picosecond time scales. The ultrafast decay rate of PA is a clear indication that the observed effect is due to photoinduced transient defects in the sub-bandgap region and associated structural rearrangement in the near-bandgap region.

14.
Opt Lett ; 42(13): 2503-2506, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957269

RESUMEN

We report here femtosecond laser-driven transient snapshots of ultrafast crystallization of Ge2Sb2Te5 films from its as-deposited amorphous phase, and the local structural change is validated by micro-Raman spectroscopy and x-ray diffraction. The decay time constant of ∼5 ps in transient spectra with a precise temporal resolution using 400 nm (pump) reveals about 68 volumetric percentage crystallization at a remarkably low fluence of 4.78 mJ·cm-2. This is attributed to reiterated excitation after a complete carrier relaxation and formation of a long-lasting transient phase at sub-threshold fluences. Furthermore, Raman spectra of irradiated spots confirm defective-octahedral modes at 110 and 160 cm-1 validating crystallization.

15.
Angew Chem Int Ed Engl ; 56(45): 14187-14191, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28906065

RESUMEN

Herein we report the colloidal synthesis of Cs3 Sb2 I9 and Rb3 Sb2 I9 perovskite nanocrystals, and explore their potential for optoelectronic applications. Different morphologies, such as nanoplatelets and nanorods of Cs3 Sb2 I9 , and spherical Rb3 Sb2 I9 nanocrystals were prepared. All these samples show band-edge emissions in the yellow-red region. Exciton many-body interactions studied by femtosecond transient absorption spectroscopy of Cs3 Sb2 I9 nanorods reveals characteristic second-derivative-type spectral features, suggesting red-shifted excitons by as much as 79 meV. A high absorption cross-section of ca. 10-15  cm2 was estimated. The results suggest that colloidal Cs3 Sb2 I9 and Rb3 Sb2 I9 nanocrystals are potential candidates for optical and optoelectronic applications in the visible region, though a better control of defect chemistry is required for efficient applications.

16.
Opt Lett ; 41(9): 2049-52, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27128071

RESUMEN

One-dimensional (1D) free-standing nanowires are particularly important for carrier confinement in two dimensions, which provides a platform to explore the nonlinear optical phenomena at the nanoscale. In this Letter, we demonstrate saturable absorption in the resonant and above-bandgap excitations of both ns and fs pulses in 1D crystalline Sb2Se3 nanowires prepared by the facile hydrothermal method. Impressively, the average length of the nanowires extends to a few micrometers with a high aspect ratio of 300. The excited-state to ground-state absorption cross-section ratio in Sb2Se3 nanowires is ≈0.23, which suggests that they can be utilized as passive mode lockers.

17.
Opt Express ; 23(11): 14085-94, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26072777

RESUMEN

In this article, we experimentally demonstrate for the first time that photobleaching (PB) can be induced in morphologically disordered a-Se thin film, an observation which is opposite of the previously well-known photodarkening (PD) effects in morphologically ordered films. Further, the optical response of the film shows many fold increase with increase in control beam intensity. To explain the observed extraordinary phenomenon, we have proposed a model based on the morphological disorder of a modified surface and its subsequent photo-annealing. Our results demonstrate an efficient and yet simple new method to engineer the optical response of photosensitive thin films. We envision that this process can open up many avenues in optical field-enhanced absorption-based technologies.

18.
Opt Lett ; 40(7): 1559-62, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25831384

RESUMEN

Ge-rich ternary chalcogenide glasses (ChGs) exhibit photobleaching (PB) when illuminated with bandgap light. This effect originates from the combined effects of intrinsic structural changes and photo-oxidation. In a sharp contradiction to previous observations, in this Letter, we demonstrate, for the first time, that Ge-rich Ge(25)As(10)Se(65) ChG thin films exhibit photodarkening (PD) at 20 K and PB at 300 and 420 K after having been continuously illuminated for ∼3 hours. The temporal evolution of PD/PB shows distinct characteristics at the temperature of illumination, and provides valuable information on the light-induced structural changes. Furthermore, structure-specific far-infrared (FIR) absorption measurements give direct evidence of different structural units involved in PD/PB at the contrasting temperatures. By comparing the light-induced effects in vacuum and air, we conclude that intrinsic structural changes dominate over photo-oxidation in the observed PB in Ge(25)As(10)Se(65) ChG thin films.

19.
Opt Lett ; 40(5): 768-71, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25723428

RESUMEN

In this Letter, we report the first observation of dramatic decrease in nanosecond (ns) pulsed laser-induced transient absorption (TA) in a-Ge(x)As(35-x)Se65 thin films by tuning the amorphous network from floppy to rigid. Our results provide the direct experimental evidence of a self-trapped exciton mechanism, where trapping of the excitons occurs through bond rearrangements. Taken together, a rigid amorphous network with more constraints than degrees of freedom are unable to undergo any such bond rearrangements and results in weaker TA. However, we also demonstrate that excitation fluence can be effectively utilized as a simple tool to lift up enough constraints to introduce large TA even in rigid networks. Apart from this, we also show that TA is tunable with network rigidity as it blueshifts when the mean coordination is increased from 2.35 to 2.6.

20.
Opt Lett ; 40(19): 4512-5, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26421569

RESUMEN

In this Letter, we report for the first time, to the best of our knowledge, continuous-wave laser background illumination (BGI) as a simple and yet useful tool to tune nanosecond transient absorption (TA) in a-Ge25As10Se65 thin films. In our experiments, we observed remarkable blueshift in TA as a function of the BGI intensity. Strikingly, relaxations of TA in background-illuminated samples are much faster than the as-prepared samples. This observation provides new insights into the bond-breaking mechanism. Further, decay time constants of TA are wavelength dependent, which signifies that excited carriers have a longer lifetime in deep traps than in shallow traps.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA