Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Dent Res ; 101(8): 962-971, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35193429

RESUMEN

Tongue muscle damage impairs speaking and eating, thereby degrading overall health and quality of life. Skeletal muscles of the body are diverse in embryonic origin, anatomic location, and gene expression profiles. Responses to disease, atrophy, aging, or drugs vary among different muscles. Currently, most muscle studies are focused on limb muscles and the tongue is neglected. The regenerative ability of tongue muscle remains unknown, and thus there is need for tongue muscle research models. Here, we present a comprehensive characterization of the spatiotemporal dynamics in a mouse model of tongue muscle regeneration and establish a method for the isolation of primary tongue-derived satellite cells. We compare and contrast our observations with the tibialis anterior (TA) limb muscle. Acute injury was induced by intramuscular injection of cardiotoxin, a cytolytic agent, and examined at multiple timepoints. Initially, necrotic myofibers with fragmented sarcoplasm became infiltrated with inflammatory cells. Concomitantly, satellite cells expanded rapidly. Seven days postinjury, regenerated myofibers with centralized nuclei appeared. Full regeneration, as well as an absence of fibrosis, was evident 21 d postinjury. Primary tongue-derived satellite cells were isolated by enzymatic separation of tongue epithelium from mesenchyme followed by magnetic-activated cell sorting. We observed that tongue displays an efficient regenerative response similar to TA but with slightly faster kinetics. In vitro, tongue-derived satellite cells differentiated robustly into mature myotubes with spontaneous contractile behavior and myogenic marker expression. Comparison of gene expression signatures between tongue and TA-derived satellite cells revealed differences in the expression of positional-identity genes, including the HOX family. In conclusion, we have established a model for tongue regeneration useful for investigations of orofacial muscle biology. Furthermore, we showed that tongue is a viable source of satellite cells with unique properties and inherited positional memory.


Asunto(s)
Células Satélite del Músculo Esquelético , Animales , Diferenciación Celular , Ratones , Músculo Esquelético , Calidad de Vida , Regeneración/fisiología , Lengua
2.
Bone ; 138: 115447, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32454257

RESUMEN

Biomineralization is remarkably diverse and provides myriad functions across many organismal systems. Biomineralization processes typically produce hardened, hierarchically organized structures usually having nanostructured mineral assemblies that are formed through inorganic-organic (usually protein) interactions. Calcium­carbonate biomineral predominates in structures of small invertebrate organisms abundant in marine environments, particularly in shells (remarkably it is also found in the inner ear otoconia of vertebrates), whereas calcium-phosphate biomineral predominates in the skeletons and dentitions of both marine and terrestrial vertebrates, including humans. Reconciliation of the interplay between organic moieties and inorganic crystals in bones and teeth is a cornerstone of biomineralization research. Key molecular determinants of skeletal and dental mineralization have been identified in health and disease, and in pathologic ectopic calcification, ranging from small molecules such as pyrophosphate, to small membrane-bounded matrix vesicles shed from cells, and to noncollagenous extracellular matrix proteins such as osteopontin and their derived bioactive peptides. Beyond partly knowing the regulatory role of the direct actions of inhibitors on vertebrate mineralization, more recently the importance of their enzymatic removal from the extracellular matrix has become increasingly understood. Great progress has been made in deciphering the relationship between mineralization inhibitors and the enzymes that degrade them, and how adverse changes in this physiologic pathway (such as gene mutations causing disease) result in mineralization defects. Two examples of this are rare skeletal diseases having osteomalacia/odontomalacia (soft bones and teeth) - namely hypophosphatasia (HPP) and X-linked hypophosphatemia (XLH) - where inactivating mutations occur in the gene for the enzymes tissue-nonspecific alkaline phosphatase (TNAP, TNSALP, ALPL) and phosphate-regulating endopeptidase homolog X-linked (PHEX), respectively. Here, we review and provide a concept for how existing and new information now comes together to describe the dual nature of regulation of mineralization - through systemic mineral ion homeostasis involving circulating factors, coupled with molecular determinants operating at the local level in the extracellular matrix. For the local mineralization events in the extracellular matrix, we present a focused concept in skeletal mineralization biology called the Stenciling Principle - a principle (building upon seminal work by Neuman and Fleisch) describing how the action of enzymes to remove tissue-resident inhibitors defines with precision the location and progression of mineralization.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Hipofosfatasia , Fosfatasa Alcalina , Animales , Huesos , Calcificación Fisiológica , Matriz Extracelular , Humanos , Osteopontina
3.
Bone ; 71: 244-56, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25460184

RESUMEN

Bone cell culture systems are essential tools for the study of the molecular mechanisms regulating extracellular matrix mineralization. MC3T3-E1 osteoblast cell cultures are the most commonly used in vitro model of bone matrix mineralization. Despite the widespread use of this cell line to study biomineralization, there is as yet no systematic characterization of the mineral phase produced in these cultures. Here we provide a comprehensive, multi-technique biophysical characterization of this cell culture mineral and extracellular matrix, and compare it to mouse bone and synthetic apatite mineral standards, to determine the suitability of MC3T3-E1 cultures for biomineralization studies. Elemental compositional analysis by energy-dispersive X-ray spectroscopy (EDS) showed calcium and phosphorus, and trace amounts of sodium and magnesium, in both biological samples. X-ray diffraction (XRD) on resin-embedded intact cultures demonstrated that similar to 1-month-old mouse bone, apatite crystals grew with preferential orientations along the (100), (101) and (111) mineral planes indicative of guided biogenic growth as opposed to dystrophic calcification. XRD of crystals isolated from the cultures revealed that the mineral phase was poorly crystalline hydroxyapatite with 10 to 20nm-sized nanocrystallites. Consistent with the XRD observations, electron diffraction patterns indicated that culture mineral had low crystallinity typical of biological apatites. Fourier-transform infrared spectroscopy (FTIR) confirmed apatitic carbonate and phosphate within the biological samples. With all techniques utilized, cell culture mineral and mouse bone mineral were remarkably similar. Scanning (SEM) and transmission (TEM) electron microscopy showed that the cultures had a dense fibrillar collagen matrix with small, 100nm-sized, collagen fibril-associated mineralization foci which coalesced to form larger mineral aggregates, and where mineralized sites showed the accumulation of the mineral-binding protein osteopontin. Light microscopy, confocal microscopy and three-dimensional reconstructions showed that some cells had dendritic processes and became embedded within the mineral in an osteocyte-like manner. In conclusion, we have documented characteristics of the mineral and matrix phases of MC3T3-E1 osteoblast cultures, and have determined that the structural and compositional properties of the mineral are highly similar to that of mouse bone.


Asunto(s)
Huesos/fisiología , Huesos/ultraestructura , Calcificación Fisiológica , Matriz Extracelular/metabolismo , Osteoblastos/fisiología , Osteoblastos/ultraestructura , Animales , Células Cultivadas , Ratones , Minerales/metabolismo , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Vibración , Difracción de Rayos X
4.
Cells Tissues Organs ; 181(3-4): 176-88, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16612083

RESUMEN

Structural hierarchies are common in biologic systems and are particularly evident in biomineralized structures. In the craniofacial complex and skeleton of vertebrates, extracellular matrix and mineral of bone are structurally ordered at many dimensional scales from the macro level to the nano level. Indeed, the nanocomposite texture of bone, with nanocrystals of apatitic mineral embedded within a crosslinked matrix of fibrillar and nonfibrillar proteins, imparts to bone the very mechanical properties and toughness it needs to function in vital organ protection, musculoskeletal movement and mastication. This article focuses on how hierarchies of extracellular matrix protein organization influence bone cell behavior, tissue architecture and mineralization. Additional attention is given to recent work on the molecular determinants of mineral induction in bone, and how the mineralization process is subsequently regulated by inhibitory proteins.


Asunto(s)
Huesos/química , Huesos/ultraestructura , Calcificación Fisiológica , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestructura , Minerales/análisis , Animales , Remodelación Ósea , Matriz Extracelular/metabolismo , Osteoblastos/metabolismo , Cráneo/química , Cráneo/crecimiento & desarrollo , Cráneo/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA