Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Psychol Med ; 54(5): 1045-1056, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37750294

RESUMEN

BACKGROUND: Stress and depression have a reciprocal relationship, but the neural underpinnings of this reciprocity are unclear. We investigated neuroimaging phenotypes that facilitate the reciprocity between stress and depressive symptoms. METHODS: In total, 22 195 participants (52.0% females) from the population-based UK Biobank study completed two visits (initial visit: 2006-2010, age = 55.0 ± 7.5 [40-70] years; second visit: 2014-2019; age = 62.7 ± 7.5 [44-80] years). Structural equation modeling was used to examine the longitudinal relationship between self-report stressful life events (SLEs) and depressive symptoms. Cross-sectional data were used to examine the overlap between neuroimaging correlates of SLEs and depressive symptoms on the second visit among 138 multimodal imaging phenotypes. RESULTS: Longitudinal data were consistent with significant bidirectional causal relationship between SLEs and depressive symptoms. In cross-sectional analyses, SLEs were significantly associated with lower bilateral nucleus accumbal volume and lower fractional anisotropy of the forceps major. Depressive symptoms were significantly associated with extensive white matter hyperintensities, thinner cortex, lower subcortical volume, and white matter microstructural deficits, mainly in corticostriatal-limbic structures. Lower bilateral nucleus accumbal volume were the only imaging phenotypes with overlapping effects of depressive symptoms and SLEs (B = -0.032 to -0.023, p = 0.006-0.034). Depressive symptoms and SLEs significantly partially mediated the effects of each other on left and right nucleus accumbens volume (proportion of effects mediated = 12.7-14.3%, p < 0.001-p = 0.008). For the left nucleus accumbens, post-hoc seed-based analysis showed lower resting-state functional connectivity with the left orbitofrontal cortex (cluster size = 83 voxels, p = 5.4 × 10-5) in participants with high v. no SLEs. CONCLUSIONS: The nucleus accumbens may play a key role in the reciprocity between stress and depressive symptoms.


Asunto(s)
Núcleo Accumbens , Sustancia Blanca , Femenino , Humanos , Persona de Mediana Edad , Anciano , Masculino , Núcleo Accumbens/diagnóstico por imagen , Depresión/diagnóstico por imagen , Estudios Transversales , Corteza Cerebral , Imagen por Resonancia Magnética
2.
Neuroimage ; 265: 119786, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470375

RESUMEN

Severe mental illnesses (SMIs) are often associated with compromised brain health, physical comorbidities, and cognitive deficits, but it is incompletely understood whether these comorbidities are intrinsic to SMI pathophysiology or secondary to having SMIs. We tested the hypothesis that cerebral, cardiometabolic, and cognitive impairments commonly observed in SMIs can be observed in non-psychiatric individuals with SMI-like brain patterns of deviation as seen on magnetic resonance imaging. 22,883 participants free of common neuropsychiatric conditions from the UK Biobank (age = 63.4 ± 7.5 years, range = 45-82 years, 50.9% female) were split into discovery and replication samples. The regional vulnerability index (RVI) was used to quantify each participant's respective brain similarity to meta-analytical patterns of schizophrenia spectrum disorder, bipolar disorder, and major depressive disorder in gray matter thickness, subcortical gray matter volume, and white matter integrity. Cluster analysis revealed five clusters with distinct RVI profiles. Compared with a cluster with no RVI elevation, a cluster with RVI elevation across all SMIs and brain structures showed significantly higher volume of white matter hyperintensities (Cohen's d = 0.59, pFDR < 10-16), poorer cardiovascular (Cohen's d = 0.30, pFDR < 10-16) and metabolic (Cohen's d = 0.12, pFDR = 1.3 × 10-4) health, and slower speed of information processing (|Cohen's d| = 0.11-0.17, pFDR = 1.6 × 10-3-4.6 × 10-8). This cluster also had significantly higher level of C-reactive protein and alcohol use (Cohen's d = 0.11 and 0.28, pFDR = 4.1 × 10-3 and 1.1 × 10-11). Three other clusters with respective RVI elevation in gray matter thickness, subcortical gray matter volume, and white matter integrity showed intermediate level of white matter hyperintensities, cardiometabolic health, and alcohol use. Our results suggest that cerebral, physical, and cognitive impairments in SMIs may be partly intrinsic via shared pathophysiological pathways with SMI-related brain anatomical changes.


Asunto(s)
Enfermedades Cardiovasculares , Disfunción Cognitiva , Trastorno Depresivo Mayor , Sustancia Blanca , Humanos , Femenino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Masculino , Pruebas Neuropsicológicas , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/patología , Sustancia Gris/patología , Sustancia Blanca/patología , Imagen por Resonancia Magnética/métodos
3.
Hum Brain Mapp ; 44(6): 2636-2653, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36799565

RESUMEN

Metabolic illnesses (MET) are detrimental to brain integrity and are common comorbidities in patients with mental illnesses, including major depressive disorder (MDD). We quantified effects of MET on standard regional brain morphometric measures from 3D brain MRI as well as diffusion MRI in a large sample of UK BioBank participants. The pattern of regional effect sizes of MET in non-psychiatric UKBB subjects was significantly correlated with the spatial profile of regional effects reported by the largest meta-analyses in MDD but not in bipolar disorder, schizophrenia or Alzheimer's disease. We used a regional vulnerability index (RVI) for MET (RVI-MET) to measure individual's brain similarity to the expected patterns in MET in the UK Biobank sample. Subjects with MET showed a higher effect size for RVI-MET than for any of the individual brain measures. We replicated elevation of RVI-MET in a sample of MDD participants with MET versus non-MET. RVI-MET scores were significantly correlated with the volume of white matter hyperintensities, a neurological consequence of MET and age, in both groups. Higher RVI-MET in both samples was associated with obesity, tobacco smoking and frequent alcohol use but was unrelated to antidepressant use. In summary, MET effects on the brain were regionally specific and individual similarity to the pattern was more strongly associated with MET than any regional brain structural metric. Effects of MET overlapped with the reported brain differences in MDD, likely due to higher incidence of MET, smoking and alcohol use in subjects with MDD.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Enfermedades Metabólicas , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética
4.
Neuroimage ; 262: 119555, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35963506

RESUMEN

Regional homogeneity (ReHo) is a measure of local functional brain connectivity that has been reported to be altered in a wide range of neuropsychiatric disorders. Computed from brain resting-state functional MRI time series, ReHo is also sensitive to fluctuations in cerebral blood flow (CBF) that in turn may be influenced by cerebrovascular health. We accessed cerebrovascular health with Framingham cardiovascular risk score (FCVRS). We hypothesize that ReHo signal may be influenced by regional CBF; and that these associations can be summarized as FCVRS→CBF→ReHo. We used three independent samples to test this hypothesis. A test-retest sample of N = 30 healthy volunteers was used for test-retest evaluation of CBF effects on ReHo. Amish Connectome Project (ACP) sample (N = 204, healthy individuals) was used to evaluate association between FCVRS and ReHo and testing if the association diminishes given CBF. The UKBB sample (N = 6,285, healthy participants) was used to replicate the effects of FCVRS on ReHo. We observed strong CBF→ReHo links (p<2.5 × 10-3) using a three-point longitudinal sample. In ACP sample, marginal and partial correlations analyses demonstrated that both CBF and FCVRS were significantly correlated with the whole-brain average (p<10-6) and regional ReHo values, with the strongest correlations observed in frontal, parietal, and temporal areas. Yet, the association between ReHo and FCVRS became insignificant once the effect of CBF was accounted for. In contrast, CBF→ReHo remained significantly linked after adjusting for FCVRS and demographic covariates (p<10-6). Analysis in N = 6,285 replicated the FCVRS→ReHo effect (p = 2.7 × 10-27). In summary, ReHo alterations in health and neuropsychiatric illnesses may be partially driven by region-specific variability in CBF, which is, in turn, influenced by cardiovascular factors.


Asunto(s)
Enfermedades Cardiovasculares , Conectoma , Encéfalo/fisiología , Enfermedades Cardiovasculares/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Imagen por Resonancia Magnética , Factores de Riesgo
5.
Hum Brain Mapp ; 43(16): 4970-4983, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36040723

RESUMEN

Severe mental illnesses (SMI), including major depressive (MDD), bipolar (BD), and schizophrenia spectrum (SSD) disorders have multifactorial risk factors and capturing their complex etiopathophysiology in an individual remains challenging. Regional vulnerability index (RVI) was used to measure individual's brain-wide similarity to the expected SMI patterns derived from meta-analytical studies. It is analogous to polygenic risk scores (PRS) that measure individual's similarity to genome-wide patterns in SMI. We hypothesized that RVI is an intermediary phenotype between genome and symptoms and is sensitive to both genetic and environmental risks for SMI. UK Biobank sample of N = 17,053/19,265 M/F (age = 64.8 ± 7.4 years) and an independent sample of SSD patients and controls (N = 115/111 M/F, age = 35.2 ± 13.4) were used to test this hypothesis. UKBB participants with MDD had significantly higher RVI-MDD (Cohen's d = 0.20, p = 1 × 10-23 ) and PRS-MDD (d = 0.17, p = 1 × 10-15 ) than nonpsychiatric controls. UKBB participants with BD and SSD showed significant elevation in the respective RVIs (d = 0.65 and 0.60; p = 3 × 10-5 and .009, respectively) and PRS (d = 0.57 and 1.34; p = .002 and .002, respectively). Elevated RVI-SSD were replicated in an independent sample (d = 0.53, p = 5 × 10-5 ). RVI-MDD and RVI-SSD but not RVI-BD were associated with childhood adversity (p < .01). In nonpsychiatric controls, elevation in RVI and PRS were associated with lower cognitive performance (p < 10-5 ) in six out of seven domains and showed specificity with disorder-associated deficits. In summary, the RVI is a novel brain index for SMI and shows similar or better specificity for SMI than PRS, and together they may complement each other in the efforts to characterize the genomic to brain level risks for SMI.


Asunto(s)
Trastorno Depresivo Mayor , Trastornos Mentales , Humanos , Herencia Multifactorial , Trastorno Depresivo Mayor/genética , Estudio de Asociación del Genoma Completo , Trastornos Mentales/genética , Encéfalo/diagnóstico por imagen , Biomarcadores , Predisposición Genética a la Enfermedad
6.
Hum Brain Mapp ; 43(6): 1997-2010, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35112422

RESUMEN

Severe mental illnesses (SMI) including major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia spectrum disorder (SSD) elevate accelerated brain aging risks. Cardio-metabolic disorders (CMD) are common comorbidities in SMI and negatively impact brain health. We validated a linear quantile regression index (QRI) approach against the machine learning "BrainAge" index in an independent SSD cohort (N = 206). We tested the direct and additive effects of SMI and CMD effects on accelerated brain aging in the N = 1,618 (604 M/1,014 F, average age = 63.53 ± 7.38) subjects with SMI and N = 11,849 (5,719 M/6,130 F; 64.42 ± 7.38) controls from the UK Biobank. Subjects were subdivided based on diagnostic status: SMI+/CMD+ (N = 665), SMI+/CMD- (N = 964), SMI-/CMD+ (N = 3,765), SMI-/CMD- (N = 8,083). SMI (F = 40.47, p = 2.06 × 10-10 ) and CMD (F = 24.69, p = 6.82 × 10-7 ) significantly, independently impacted whole-brain QRI in SMI+. SSD had the largest effect (Cohen's d = 1.42) then BD (d = 0.55), and MDD (d = 0.15). Hypertension had a significant effect on SMI+ (d = 0.19) and SMI- (d = 0.14). SMI effects were direct, independent of MD, and remained significant after correcting for effects of antipsychotic medications. Whole-brain QRI was significantly (p < 10-16 ) associated with the volume of white matter hyperintensities (WMH). However, WMH did not show significant association with SMI and was driven by CMD, chiefly hypertension (p < 10-16 ). We used a simple and robust index, QRI, the demonstrate additive effect of SMI and CMD on accelerated brain aging. We showed a greater effect of psychiatric illnesses on QRI compared to cardio-metabolic illness. Our findings suggest that subjects with SMI should be among the targets for interventions to protect against age-related cognitive decline.


Asunto(s)
Trastorno Depresivo Mayor , Hipertensión , Trastornos Mentales , Enfermedades Metabólicas , Anciano , Envejecimiento , Encéfalo/diagnóstico por imagen , Trastorno Depresivo Mayor/complicaciones , Trastorno Depresivo Mayor/epidemiología , Humanos , Trastornos Mentales/epidemiología , Enfermedades Metabólicas/complicaciones , Enfermedades Metabólicas/epidemiología , Persona de Mediana Edad
7.
J Neuropsychiatry Clin Neurosci ; 34(3): 254-260, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35040662

RESUMEN

OBJECTIVE: Increased impulsivity is a hallmark trait of some neuropsychiatric illnesses, including addiction, traumatic brain injury, and externalizing disorders. The authors hypothesized that altered cerebral white matter microstructure may also underwrite normal individual variability in impulsive behaviors and tested this among healthy individuals. METHODS: Impulsivity and diffusion tensor imaging (DTI) data were collected from 74 healthy adults (32 women; mean age=36.6 years [SD=13.6]). Impulsivity was evaluated using the Barratt Impulsiveness Scale-11, which provides a total score and scores for three subdomains: attentional, motor, and nonplanning impulsiveness. DTI was processed using the Enhancing Neuro Imaging Genetics Through Meta Analysis-DTI analysis pipeline to measure whole-brain and regional white matter fractional anisotropy (FA) values in 24 tracts. RESULTS: Whole-brain total average FA was inversely correlated with motor impulsiveness (r=-0.32, p=0.007) and positively correlated with nonplanning impulsiveness (r=0.29, p=0.02); these correlations were significant after correction for multiple comparisons. Additional significant correlations were observed for motor impulsiveness and regional FA values for the corticospinal tract (r=-0.29, p=0.01) and for nonplanning impulsiveness and regional FA values for the superior fronto-occipital fasciculus (r=0.32, p=0.008). CONCLUSIONS: These results provide initial evidence that the motor and nonplanning subdomains of impulsive behavior are linked to specific white matter microstructural connectivity, supporting the notion that impulsivity is in part a network-based construct involving white matter microstructural integrity among otherwise healthy populations.


Asunto(s)
Sustancia Blanca , Adulto , Anisotropía , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Conducta Impulsiva , Sustancia Blanca/diagnóstico por imagen
8.
Neuroimage ; 245: 118700, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34740793

RESUMEN

Imaging genetics analyses use neuroimaging traits as intermediate phenotypes to infer the degree of genetic contribution to brain structure and function in health and/or illness. Coefficients of relatedness (CR) summarize the degree of genetic similarity among subjects and are used to estimate the heritability - the proportion of phenotypic variance explained by genetic factors. The CR can be inferred directly from genome-wide genotype data to explain the degree of shared variation in common genetic polymorphisms (SNP-heritability) among related or unrelated subjects. We developed a central processing and graphics processing unit (CPU and GPU) accelerated Fast and Powerful Heritability Inference (FPHI) approach that linearizes likelihood calculations to overcome the ∼N2-3 computational effort dependency on sample size of classical likelihood approaches. We calculated for 60 regional and 1.3 × 105 voxel-wise traits in N = 1,206 twin and sibling participants from the Human Connectome Project (HCP) (550 M/656 F, age = 28.8 ± 3.7 years) and N = 37,432 (17,531 M/19,901 F; age = 63.7 ± 7.5 years) participants from the UK Biobank (UKBB). The FPHI estimates were in excellent agreement with heritability values calculated using Genome-wide Complex Trait Analysis software (r = 0.96 and 0.98 in HCP and UKBB sample) while significantly reducing computational (102-4 times). The regional and voxel-wise traits heritability estimates for the HCP and UKBB were likewise in excellent agreement (r = 0.63-0.76, p < 10-10). In summary, the hardware-accelerated FPHI made it practical to calculate heritability values for voxel-wise neuroimaging traits, even in very large samples such as the UKBB. The patterns of additive genetic variance in neuroimaging traits measured in a large sample of related and unrelated individuals showed excellent agreement regardless of the estimation method. The code and instruction to execute these analyses are available at www.solar-eclipse-genetics.org.


Asunto(s)
Conectoma/métodos , Fenómenos Genéticos , Neuroimagen/métodos , Adulto , Algoritmos , Bancos de Muestras Biológicas , Biología Computacional , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple
9.
Hum Brain Mapp ; 41(3): 767-778, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31633254

RESUMEN

Subanesthetic administration of ketamine is a pharmacological model to elicit positive and negative symptoms of psychosis in healthy volunteers. We used resting-state pharmacological functional MRI (rsPhfMRI) to identify cerebral networks affected by ketamine and compared them to the functional connectivity (FC) in schizophrenia. Ketamine can produce sedation and we contrasted its effects with the effects of the anxiolytic drug midazolam. Thirty healthy male volunteers (age = 19-37 years) underwent a randomized, three-way, cross-over study consisting of three imaging sessions, with 48 hr between sessions. A session consisted of a control period followed by infusion of placebo or ketamine or midazolam. The ENIGMA rsfMRI pipeline was used to derive two long-distance (seed-based and dual-regression) and one local (regional homogeneity, ReHo) FC measures. Ketamine induced significant reductions in the connectivity of the salience network (Cohen's d: 1.13 ± 0.28, p = 4.0 × 10-3 ), auditory network (d: 0.67 ± 0.26, p = .04) and default mode network (DMN, d: 0.63 ± 0.26, p = .05). Midazolam significantly reduced connectivity in the DMN (d: 0.77 ± 0.27, p = .03). The effect sizes for ketamine for resting networks showed a positive correlation (r = .59, p = .07) with the effect sizes for schizophrenia-related deficits derived from ENIGMA's study of 261 patients and 327 controls. Effect sizes for midazolam were not correlated with the schizophrenia pattern (r = -.17, p = .65). The subtraction of ketamine and midazolam patterns showed a significant positive correlation with the pattern of schizophrenia deficits (r = .68, p = .03). RsPhfMRI reliably detected the shared and divergent pharmacological actions of ketamine and midazolam on cerebral networks. The pattern of disconnectivity produced by ketamine was positively correlated with the pattern of connectivity deficits observed in schizophrenia, suggesting a brain functional basis for previously poorly understood effects of the drug.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Depresores del Sistema Nervioso Central/farmacología , Conectoma , Red en Modo Predeterminado/efectos de los fármacos , Ketamina/farmacología , Midazolam/farmacología , Red Nerviosa/efectos de los fármacos , Esquizofrenia/fisiopatología , Adulto , Encéfalo/diagnóstico por imagen , Estudios Cruzados , Red en Modo Predeterminado/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Adulto Joven
10.
Psychosom Med ; 82(6): 623-630, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32310840

RESUMEN

OBJECTIVE: Schizophrenia is associated with excess medical mortality: patients have an average life expectancy one to two decades shorter than the general population. This study investigates the relationship between aberrant hippocampal resting-state functional connectivity in schizophrenia and cumulative subclinical effects of chronic stress on metabolic, cardiovascular, and immune function using the allostatic load index. METHODS: Cumulative stress was estimated using allostatic load total score (range, 0-13) in 46 patients with schizophrenia and 31 controls matched for age and sex (patients: age = 36.1 [13.7] years, sex = 32/14 male/female; controls: age = 35.5 [14.1], sex = 21/10 male/female). Hippocampal functional connectivity was assessed using resting-state functional magnetic resonance imaging; hippocampal structural connectivity was assessed using fornix fractional anisotropy. Linear regression analysis was used a) to test the hypothesis that aberrant hippocampal resting-state functional connectivity in schizophrenia (identified in analysis of schizophrenia - control differences) is associated with elevated allostatic load scores in patients and b) to determine the association between fornix fractional anisotropy with allostatic load. RESULTS: In patients, higher allostatic load was significantly associated with reduced resting functional connectivity between the left hippocampus and right cingulate cortex and left precentral gyrus, but higher connectivity between the right hippocampus and left cerebellum lobe VI (corrected p values <. 05). In controls, reductions in both hippocampal structural connectivity and hippocampal-cingulate functional connectivity were associated with higher allostatic load scores. CONCLUSIONS: These findings support basic neuroscience evidence that cumulative stress and hippocampal function are closely connected and suggest that abnormal hippocampal functional communication in schizophrenia may be related to elevated multisystem subclinical medical issues in patients as indexed by allostatic load.


Asunto(s)
Alostasis/fisiología , Conectoma , Hipocampo/fisiopatología , Esquizofrenia/fisiopatología , Estrés Psicológico/fisiopatología , Adulto , Femenino , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/patología , Estrés Psicológico/diagnóstico por imagen , Estrés Psicológico/patología
11.
Hum Brain Mapp ; 40(16): 4593-4605, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31313441

RESUMEN

Cognitive deficits contribute to functional disability in patients with schizophrenia and may be related to altered functional networks that serve cognition. We evaluated the integrity of major functional networks and assessed their role in supporting two cognitive functions affected in schizophrenia: processing speed (PS) and working memory (WM). Resting-state functional magnetic resonance imaging (rsfMRI) data, N = 261 patients and 327 controls, were aggregated from three independent cohorts and evaluated using Enhancing NeuroImaging Genetics through Meta Analysis rsfMRI analysis pipeline. Meta- and mega-analyses were used to evaluate patient-control differences in functional connectivity (FC) measures. Canonical correlation analysis was used to study the association between cognitive deficits and FC measures. Patients showed consistent patterns of cognitive and resting-state FC (rsFC) deficits across three cohorts. Patient-control differences in rsFC calculated using seed-based and dual-regression approaches were consistent (Cohen's d: 0.31 ± 0.09 and 0.29 ± 0.08, p < 10-4 ). RsFC measures explained 12-17% of the individual variations in PS and WM in the full sample and in patients and controls separately, with the strongest correlations found in salience, auditory, somatosensory, and default-mode networks. The pattern of association between rsFC (within-network) and PS (r = .45, p = .07) and WM (r = .36, p = .16), and rsFC (between-network) and PS (r = .52, p = 8.4 × 10-3 ) and WM (r = .47, p = .02), derived from multiple networks was related to effect size of patient-control differences in the functional networks. No association was detected between rsFC and current medication dose or psychosis ratings. Patients demonstrated significant reduction in several FC networks that may partially underlie some of the core neurocognitive deficits in schizophrenia. The strength of connectivity-cognition relationships in different networks was strongly associated with network's vulnerability to schizophrenia.


Asunto(s)
Mapeo Encefálico , Red Nerviosa/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Psicología del Esquizofrénico , Adulto , Antipsicóticos/uso terapéutico , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/psicología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Memoria a Corto Plazo , Escalas de Valoración Psiquiátrica , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/psicología , Adulto Joven
12.
Hum Brain Mapp ; 39(12): 4893-4902, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30052318

RESUMEN

We measured and compared heritability estimates for measures of functional brain connectivity extracted using the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) rsfMRI analysis pipeline in two cohorts: the genetics of brain structure (GOBS) cohort and the HCP (the Human Connectome Project) cohort. These two cohorts were assessed using conventional (GOBS) and advanced (HCP) rsfMRI protocols, offering a test case for harmonization of rsfMRI phenotypes, and to determine measures that show consistent heritability for in-depth genome-wide analysis. The GOBS cohort consisted of 334 Mexican-American individuals (124M/210F, average age = 47.9 ± 13.2 years) from 29 extended pedigrees (average family size = 9 people; range 5-32). The GOBS rsfMRI data was collected using a 7.5-min acquisition sequence (spatial resolution = 1.72 × 1.72 × 3 mm3 ). The HCP cohort consisted of 518 twins and family members (240M/278F; average age = 28.7 ± 3.7 years). rsfMRI data was collected using 28.8-min sequence (spatial resolution = 2 × 2 × 2 mm3 ). We used the single-modality ENIGMA rsfMRI preprocessing pipeline to estimate heritability values for measures from eight major functional networks, using (1) seed-based connectivity and (2) dual regression approaches. We observed significant heritability (h2 = 0.2-0.4, p < .05) for functional connections from seven networks across both cohorts, with a significant positive correlation between heritability estimates across two cohorts. The similarity in heritability estimates for resting state connectivity measurements suggests that the additive genetic contribution to functional connectivity is robustly detectable across populations and imaging acquisition parameters. The overarching genetic influence, and means to consistently detect it, provides an opportunity to define a common genetic search space for future gene discovery studies.


Asunto(s)
Corteza Cerebral/fisiología , Conectoma/métodos , Herencia/fisiología , Imagen por Resonancia Magnética/métodos , Red Nerviosa/fisiología , Fenotipo , Adulto , Corteza Cerebral/diagnóstico por imagen , Estudios de Cohortes , Familia , Femenino , Humanos , Masculino , Americanos Mexicanos , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Gemelos , Adulto Joven
13.
Neuroimage ; 91: 300-10, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24434679

RESUMEN

Oscillatory interactions within functionally specialized but distributed brain regions are believed to be central to perceptual and cognitive functions. Here, using human scalp electroencephalography (EEG) recordings combined with source reconstruction techniques, we study how oscillatory activity functionally organizes different neocortical regions during a tactile discrimination task near the limit of spatial acuity. While undergoing EEG recordings, blindfolded participants felt a linear three-dot array presented electromechanically, under computer control, and reported whether the central dot was offset to the left or right. The average brain response differed significantly for trials with correct and incorrect perceptual responses in the timeframe approximately between 130 and 175ms. During trials with correct responses, source-level peak activity appeared in the left primary somatosensory cortex (SI) at around 45ms, in the right lateral occipital complex (LOC) at 130ms, in the right posterior intraparietal sulcus (pIPS) at 160ms, and finally in the left dorsolateral prefrontal cortex (dlPFC) at 175ms. Spectral interdependency analysis of activity in these nodes showed two distinct distributed networks, a dominantly feedforward network in the beta band (12-30Hz) that included all four nodes and a recurrent network in the gamma band (30-100Hz) that linked SI, pIPS and dlPFC. Measures of network activity in both bands were correlated with the accuracy of task performance. These findings suggest that beta and gamma band oscillatory networks coordinate activity between neocortical regions mediating sensory and cognitive processing to arrive at tactile perceptual decisions.


Asunto(s)
Discriminación en Psicología/fisiología , Neocórtex/fisiología , Red Nerviosa/fisiología , Percepción Espacial/fisiología , Tacto/fisiología , Adolescente , Adulto , Ritmo beta/fisiología , Causalidad , Toma de Decisiones , Electroencefalografía , Potenciales Evocados/fisiología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Neuroimagen , Lóbulo Parietal/fisiología , Corteza Prefrontal/fisiología , Desempeño Psicomotor/fisiología , Corteza Somatosensorial/fisiología , Adulto Joven
14.
Epilepsia ; 55(12): 2038-47, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25369316

RESUMEN

OBJECTIVE: In recent decades intracranial EEG (iEEG) recordings using increasing numbers of electrodes, higher sampling rates, and a variety of visual and quantitative analyses have indicated the presence of widespread, high frequency ictal and preictal oscillations (HFOs) associated with regions of seizure onset. Seizure freedom has been correlated with removal of brain regions generating pathologic HFOs. However, quantitative analysis of preictal HFOs has seldom been applied to the clinical problem of planning the surgical resection. We performed Granger causality (GC) analysis of iEEG recordings to analyze features of preictal seizure networks and to aid in surgical decision making. METHODS: Ten retrospective and two prospective patients were chosen on the basis of individually stereotyped seizure patterns by visual criteria. Prospective patients were selected, additionally, for failure of those criteria to resolve apparent multilobar ictal onsets. iEEG was recorded at 500 or 1,000 Hz, using up to 128 surface and depth electrodes. Preictal and early ictal GC from individual electrodes was characterized by the strength of causal outflow, spatial distribution, and hierarchical causal relationships. RESULTS: In all patients we found significant, widespread preictal GC network activity at peak frequencies from 80 to 250 Hz, beginning 2-42 s before visible electrographic onset. In the two prospective patients, GC source/sink comparisons supported the exclusion of early ictal regions that were not the dominant causal sources, and contributed to planning of more limited surgical resections. Both patients have a class 1 outcome at 1 year. SIGNIFICANCE: GC analysis of iEEG has the potential to increase understanding of preictal network activity, and to help improve surgical outcomes in cases of otherwise ambiguous iEEG onset.


Asunto(s)
Ondas Encefálicas/fisiología , Toma de Decisiones , Epilepsia/cirugía , Procedimientos Neuroquirúrgicos , Procesamiento de Señales Asistido por Computador , Adulto , Mapeo Encefálico , Causalidad , Electrodos Implantados , Electroencefalografía , Femenino , Humanos , Masculino , Estudios Prospectivos , Estudios Retrospectivos
15.
J Psychiatr Res ; 171: 75-83, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38246028

RESUMEN

A clear understanding of the pathophysiology of schizophrenia and related spectrum disorders has been limited by clinical heterogeneity. We investigated whether relative severity and predominance of one or more delusion subtypes might yield clinically differentiable patient profiles. Patients (N = 286) with schizophrenia spectrum disorders (SSD) completed the 21-item Peters et al. Delusions Inventory (PDI-21). We performed factor analysis followed by k-means clustering to identify delusion factors and patient subtypes. Patients were further assessed via the Brief Psychiatric Rating Scale, Brief Negative Symptom Scale, Digit Symbol and Digit Substitution tasks, use of cannabis and tobacco, and stressful life events. The overall patient sample clustered into subtypes corresponding to Low-Delusion, Grandiose-Predominant, Paranoid-Predominant, and Pan-Delusion patients. Paranoid-Predominant and Pan-Delusion patients showed significantly higher burden of positive symptoms, while Low-Delusion patients showed the highest burden of negative symptoms. The Paranoia delusion factor score showed a positive association with Digit Symbol and Digit Substitution tasks in the overall sample, and the Paranoid-Predominant subtype exhibited the best performance on both tasks. Grandiose-Predominant patients showed significantly higher tobacco smoking severity than other subtypes, while Paranoid-Predominant patients were significantly more likely to have a lifetime diagnosis of Cannabis Use Disorder. We suggest that delusion self-report inventories such as the PDI-21 may be of utility in identifying sub-syndromes in SSD. From the current study, a Paranoid-Predominant form may be most distinctive, with features including less cognitive impairment and a stronger association with cannabis use.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/complicaciones , Esquizofrenia/diagnóstico , Deluciones/etiología , Trastornos del Humor/complicaciones , Escalas de Valoración Psiquiátrica Breve
16.
Neuropsychopharmacology ; 48(11): 1594-1601, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37118058

RESUMEN

Cognitive impairments predict poor functional outcomes in people with schizophrenia. These impairments may be causally related to increased levels of kynurenic acid (KYNA), a major metabolic product of tryptophan (TRYP). In the brain, KYNA acts as an antagonist of the of α7-nicotinic acetylcholine and NMDA receptors, both of which are involved in cognitive processes. To examine whether KYNA plays a role in the pathophysiology of schizophrenia, we compared the acute effects of a single oral dose of TRYP (6 g) in 32 healthy controls (HC) and 37 people with either schizophrenia (Sz), schizoaffective or schizophreniform disorder, in a placebo-controlled, randomized crossover study. We examined plasma levels of KYNA and its precursor kynurenine; selected cognitive measures from the MATRICS Consensus Cognitive Battery; and resting cerebral blood flow (CBF) using arterial spin labeling imaging. In both cohorts, the TRYP challenge produced significant, time-dependent elevations in plasma kynurenine and KYNA. The resting CBF signal (averaged across all gray matter) was affected differentially, such that TRYP was associated with higher CBF in HC, but not in participants with a Sz-related disorder. While TRYP did not significantly impair cognitive test performance, there was a trend for TRYP to worsen visuospatial memory task performance in HC. Our results demonstrate that oral TRYP challenge substantially increases plasma levels of kynurenine and KYNA in both groups, but exerts differential group effects on CBF. Future studies are required to investigate the mechanisms underlying these CBF findings, and to evaluate the impact of KYNA fluctuations on brain function and behavior. (Clinicaltrials.gov: NCT02067975).


Asunto(s)
Quinurenina , Esquizofrenia , Ratas , Animales , Humanos , Triptófano , Ácido Quinurénico/metabolismo , Estudios Cruzados , Ratas Wistar , Cognición , Circulación Cerebrovascular
17.
J Cereb Blood Flow Metab ; 43(5): 791-800, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36606600

RESUMEN

Decreased cerebral blood flow (CBF) may be an important mechanism associated with depression. In this study we aimed to determine if the association of CBF and depression is dependent on current level of depression or the tendency to experience depression over time (trait depression), and if CBF is influenced by depression-related factors such as stressful life experiences and antidepressant medication use. CBF was measured in 254 participants from the Amish Connectome Project (age 18-76, 99 men and 154 women) using arterial spin labeling. All participants underwent assessment of symptoms of depression measured with the Beck Depression Inventory and Maryland Trait and State Depression scales. Individuals diagnosed with a unipolar depressive disorder had significantly lower average gray matter CBF compared to individuals with no history of depression or to individuals with a history of depression that was in remission at time of study. Trait depression was significantly associated with lower CBF, with the associations strongest in cingulate gyrus and frontal white matter. Use of antidepressant medication and more stressful life experiences were also associated with significantly lower CBF. Resting CBF in specific brain regions is associated with trait depression, experience of stressful life events, and current antidepressant use, and may provide a valuable biomarker for further studies.


Asunto(s)
Antidepresivos , Encéfalo , Masculino , Humanos , Femenino , Adolescente , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Antidepresivos/uso terapéutico , Corteza Cerebral , Sustancia Gris , Circulación Cerebrovascular/fisiología , Imagen por Resonancia Magnética , Marcadores de Spin
18.
Transl Psychiatry ; 13(1): 13, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36653335

RESUMEN

Aberrant gamma frequency neural oscillations in schizophrenia have been well demonstrated using auditory steady-state responses (ASSR). However, the neural circuits underlying 40 Hz ASSR deficits in schizophrenia remain poorly understood. Sixty-six patients with schizophrenia spectrum disorders and 85 age- and gender-matched healthy controls completed one electroencephalography session measuring 40 Hz ASSR and one imaging session for resting-state functional connectivity (rsFC) assessments. The associations between the normalized power of 40 Hz ASSR and rsFC were assessed via linear regression and mediation models. We found that rsFC among auditory, precentral, postcentral, and prefrontal cortices were positively associated with 40 Hz ASSR in patients and controls separately and in the combined sample. The mediation analysis further confirmed that the deficit of gamma band ASSR in schizophrenia was nearly fully mediated by three of the rsFC circuits between right superior temporal gyrus-left medial prefrontal cortex (MPFC), left MPFC-left postcentral gyrus (PoG), and left precentral gyrus-right PoG. Gamma-band ASSR deficits in schizophrenia may be associated with deficient circuitry level connectivity to support gamma frequency synchronization. Correcting gamma band deficits in schizophrenia may require corrective interventions to normalize these aberrant networks.


Asunto(s)
Corteza Auditiva , Conectoma , Esquizofrenia , Humanos , Potenciales Evocados Auditivos/fisiología , Estimulación Acústica/métodos , Electroencefalografía/métodos
19.
Biol Psychiatry ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38070846

RESUMEN

BACKGROUND: Schizophrenia research reveals sex differences in incidence, symptoms, genetic risk factors, and brain function. However, a knowledge gap remains regarding sex-specific schizophrenia alterations in brain function. Schizophrenia is considered a dysconnectivity syndrome, but the dynamic integration and segregation of brain networks are poorly understood. Recent advances in resting-state functional magnetic resonance imaging allow us to study spatial dynamics, the phenomenon of brain networks spatially evolving over time. Nevertheless, estimating time-resolved networks remains challenging due to low signal-to-noise ratio, limited short-time information, and uncertain network identification. METHODS: We adapted a reference-informed network estimation technique to capture time-resolved networks and their dynamic spatial integration and segregation for 193 individuals with schizophrenia and 315 control participants. We focused on time-resolved spatial functional network connectivity, an estimate of network spatial coupling, to study sex-specific alterations in schizophrenia and their links to genomic data. RESULTS: Our findings are consistent with the dysconnectivity and neurodevelopment hypotheses and with the cerebello-thalamo-cortical, triple-network, and frontoparietal dysconnectivity models, helping to unify them. The potential unification offers a new understanding of the underlying mechanisms. Notably, the posterior default mode/salience spatial functional network connectivity exhibits sex-specific schizophrenia alteration during the state with the highest global network integration and is correlated with genetic risk for schizophrenia. This dysfunction is reflected in regions with weak functional connectivity to corresponding networks. CONCLUSIONS: Our method can effectively capture spatially dynamic networks, detect nuanced schizophrenia effects including sex-specific ones, and reveal the intricate relationship of dynamic information to genomic data. The results also underscore the clinical potential of dynamic spatial dependence and weak connectivity.

20.
Transl Psychiatry ; 13(1): 59, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36797233

RESUMEN

Both, pharmacological and genome-wide association studies suggest N-methyl-D-aspartate receptor (NMDAR) dysfunction and excitatory/inhibitory (E/I)-imbalance as a major pathophysiological mechanism of schizophrenia. The identification of shared fMRI brain signatures of genetically and pharmacologically induced NMDAR dysfunction may help to define biomarkers for patient stratification. NMDAR-related genetic and pharmacological effects on functional connectivity were investigated by integrating three different datasets: (A) resting state fMRI data from 146 patients with schizophrenia genotyped for the disease-associated genetic variant rs7191183 of GRIN2A (encoding the NMDAR 2 A subunit) as well as 142 healthy controls. (B) Pharmacological effects of the NMDAR antagonist ketamine and the GABA-A receptor agonist midazolam were obtained from a double-blind, crossover pharmaco-fMRI study in 28 healthy participants. (C) Regional gene expression profiles were estimated using a postmortem whole-brain microarray dataset from six healthy donors. A strong resemblance was observed between the effect of the genetic variant in schizophrenia and the ketamine versus midazolam contrast of connectivity suggestive for an associated E/I-imbalance. This similarity became more pronounced for regions with high density of NMDARs, glutamatergic neurons, and parvalbumin-positive interneurons. From a functional perspective, increased connectivity emerged between striato-pallido-thalamic regions and cortical regions of the auditory-sensory-motor network, while decreased connectivity was observed between auditory (superior temporal gyrus) and visual processing regions (lateral occipital cortex, fusiform gyrus, cuneus). Importantly, these imaging phenotypes were associated with the genetic variant, the differential effect of ketamine versus midazolam and schizophrenia (as compared to healthy controls). Moreover, the genetic variant was associated with language-related negative symptomatology which correlated with disturbed connectivity between the left posterior superior temporal gyrus and the superior lateral occipital cortex. Shared genetic and pharmacological functional connectivity profiles were suggestive of E/I-imbalance and associated with schizophrenia. The identified brain signatures may help to stratify patients with a common molecular disease pathway providing a basis for personalized psychiatry.


Asunto(s)
Ketamina , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética , Esquizofrenia/metabolismo , Imagen por Resonancia Magnética/métodos , Ketamina/farmacología , Receptores de N-Metil-D-Aspartato/genética , Estudio de Asociación del Genoma Completo , Midazolam
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA