RESUMEN
We present a numerical study of the time-dependent and time-independent Gross-Pitaevskii (GP) equation in two space dimensions, which describes the Bose-Einstein condensate of trapped bosons at ultralow temperature with both attractive and repulsive interatomic interactions. Both time-dependent and time-independent GP equations are used to study the stationary problems. In addition the time-dependent approach is used to study some evolution problems of the condensate. Specifically, we study the evolution problem where the trap energy is suddenly changed in a stable preformed condensate. In this case the system oscillates with increasing amplitude and does not remain limited between two stable configurations. Good convergence is obtained in all cases studied.
RESUMEN
A nonthermal quantum mechanical statistical fragmentation model based on tunneling of particles through potential barriers is studied in compact two- and three-dimensional systems. It is shown that this fragmentation dynamics gives origin to several static and dynamic scaling relations. The critical exponents are found and compared with those obtained in classical statistical models of fragmentation of general interest, in particular with thermal fragmentation involving classical processes over potential barriers. Besides its general theoretical interest, the fragmentation dynamics discussed here is complementary to classical fragmentation dynamics of interest in chemical kinetics and can be useful in the study of a number of other dynamic processes such as nuclear fragmentation.