Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 141(19): 2316-2329, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-36790505

RESUMEN

Adeno-associated virus (AAV) vectors have been successfully exploited in gene therapy applications for the treatment of several genetic disorders. AAV is considered an episomal vector, but it has been shown to integrate within the host cell genome after the generation of double-strand DNA breaks or nicks. Although AAV integration raises some safety concerns, it can also provide therapeutic benefit; the direct intrathymic injection of an AAV harboring a therapeutic transgene results in integration in T-cell progenitors and long-term T-cell immunity. To assess the mechanisms of AAV integration, we retrieved and analyzed hundreds of AAV integration sites from lymph node-derived mature T cells and compared these with liver and brain tissue from treated mice. Notably, we found that although AAV integrations in the liver and brain were distributed across the entire mouse genome, >90% of the integrations in T cells were clustered within the T-cell receptor α, ß, and γ genes. More precisely, the insertion mapped to DNA breaks created by the enzymatic activity of recombination activating genes (RAGs) during variable, diversity, and joining recombination. Our data indicate that RAG activity during T-cell receptor maturation induces a site-specific integration of AAV genomes and opens new therapeutic avenues for achieving long-term AAV-mediated gene transfer in dividing cells.


Asunto(s)
Terapia Genética , Vectores Genéticos , Ratones , Animales , Vectores Genéticos/genética , Transgenes , Plásmidos , Terapia Genética/métodos , Receptores de Antígenos de Linfocitos T/genética , Dependovirus/genética , Integración Viral
2.
Eur Biophys J ; 52(4-5): 367-377, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37106255

RESUMEN

Recombinant adeno-associated virus virus-derived vectors (rAAVs) are among the most used viral delivery system for in vivo gene therapies with a good safety profile. However, rAAV production methods often lead to a heterogeneous vector population, in particular with the presence of undesired empty particles. Analytical ultracentrifugation sedimentation velocity (AUC-SV) is considered as the gold analytical technique allowing the measurement of relative amounts of each vector subpopulation and components like particle aggregates, based on their sedimentation coefficients. This letter presents the principle and practice of AUC experiments for rAAVs characterization. We discuss our results in the framework of previously published works. In addition to classical detection at 260 nm, using interference optics in the ultracentrifuge can provide an independent estimate of weight percentages of the different populations of capsids, and of the genome size incorporated in rAAV particles.


Asunto(s)
Dependovirus , Vectores Genéticos , Dependovirus/genética , Terapia Genética , Ultracentrifugación/métodos
3.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37445621

RESUMEN

Recombinant Adeno-Associated Virus (rAAV) is considered as one of the most successful and widely used viral vectors for in vivo gene therapy. However, host immune responses to the vector and/or the transgene product remain a major hurdle to successful AAV gene transfer. In contrast to antivector adaptive immunity, the initiation of the innate immunity towards rAAV is still poorly understood but is directly dependent on the interaction between the viral vector and innate immune cells. Here, we used a quantitative transcriptomic-based approach to determine the activation of inflammatory and anti-viral pathways after rAAV8-based infection of monocyte-derived dendritic cells (moDCs) obtained from 12 healthy human donors. We have shown that rAAV8 particles are efficiently internalized, but that this uptake does not induce any detectable transcriptomic change in moDCs in contrast to an adenoviral infection, which upregulates anti-viral pathways. These findings suggest an immunologically favorable profile for rAAV8 serotype with regard to in vitro activation of moDC model. Transcriptomic analysis of rAAV-infected innate immune cells is a powerful method to determine the ability of the viral vector to be seen by these sensor cells, which remains of great importance to better understand the immunogenicity of rAAV vectors and to design immune-stealth products.


Asunto(s)
Monocitos , Transcriptoma , Humanos , Vectores Genéticos/genética , Inmunidad Adaptativa , Células Dendríticas , Dependovirus/genética
4.
Gene Ther ; 29(9): 520-535, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35105949

RESUMEN

Duchenne muscular dystrophy (DMD) is a muscle wasting disorder caused by mutations in the gene encoding dystrophin. Gene therapy using micro-dystrophin (MD) transgenes and recombinant adeno-associated virus (rAAV) vectors hold great promise. To overcome the limited packaging capacity of rAAV vectors, most MD do not include dystrophin carboxy-terminal (CT) domain. Yet, the CT domain is known to recruit α1- and ß1-syntrophins and α-dystrobrevin, a part of the dystrophin-associated protein complex (DAPC), which is a signaling and structural mediator of muscle cells. In this study, we explored the impact of inclusion of the dystrophin CT domain on ΔR4-23/ΔCT MD (MD1), in DMDmdx rats, which allows for relevant evaluations at muscular and cardiac levels. We showed by LC-MS/MS that MD1 expression is sufficient to restore the interactions at a physiological level of most DAPC partners in skeletal and cardiac muscles, and that inclusion of the CT domain increases the recruitment of some DAPC partners at supra-physiological levels. In parallel, we demonstrated that inclusion of the CT domain does not improve MD1 therapeutic efficacy on DMD muscle and cardiac pathologies. Our work highlights new evidences of the therapeutic potential of MD1 and strengthens the relevance of this candidate for gene therapy of DMD.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Animales , Cromatografía Liquida , Distrofina/genética , Distrofina/metabolismo , Complejo de Proteínas Asociado a la Distrofina/metabolismo , Terapia Genética , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Ratas , Espectrometría de Masas en Tándem
5.
J Transl Med ; 19(1): 519, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930315

RESUMEN

BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked inherited disease caused by mutations in the gene encoding dystrophin that leads to a severe and ultimately life limiting muscle-wasting condition. Recombinant adeno-associated vector (rAAV)-based gene therapy is promising, but the size of the full-length dystrophin cDNA exceeds the packaging capacity of a rAAV. Alternative or complementary strategies that could treat DMD patients are thus needed. Intracellular calcium overload due to a sarcolemma permeability to calcium (SPCa) increase is an early and critical step of the DMD pathogenesis. We assessed herein whether TRPC1 and TRPC3 calcium channels may be involved in skeletal muscle SPCa alterations and could represent therapeutic targets to treat DMD. METHODS: All experiments were conducted in the DMDmdx rat, an animal model that closely reproduces the human DMD disease. We measured the cytosolic calcium concentration ([Ca2+]c) and SPCa in EDL (Extensor Digitorum Longus) muscle fibers from age-matched WT and DMDmdx rats of 1.5 to 7 months old. TRPC1 and TRPC3 expressions were measured in the EDL muscles at both the mRNA and protein levels, by RT-qPCR, western blot and immunocytofluorescence analysis. RESULTS: As expected from the malignant hyperthermia like episodes observed in several DMDmdx rats, calcium homeostasis alterations were confirmed by measurements of early increases in [Ca2+]c and SPCa in muscle fibers. TRPC3 and TRPC1 protein levels were increased in DMDmdx rats. This was observed as soon as 1.5 months of age for TRPC3 but only at 7 months of age for TRPC1. A slight but reliable shift of the TRPC3 apparent molecular weight was observed in DMDmdx rat muscles. Intracellular localization of both channels was not altered. We thus focused our attention on TRPC3. Application of Pyr10, a specific inhibitor of TRPC3, abolished the differences between SPCa values measured in WT and DMDmdx. Finally, we showed that a rAAV-microdystrophin based treatment induced a high microdystrophin expression but only partial prevention of calcium homeostasis alterations, skeletal muscle force and TRPC3 protein increase. CONCLUSIONS: All together our results show that correcting TRPC3 channel expression and/or activity appear to be a promising approach as a single or as a rAAV-based complementary therapy to treat DMD.


Asunto(s)
Distrofia Muscular de Duchenne , Animales , Terapia Genética/métodos , Humanos , Ratones , Ratones Endogámicos mdx , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia , Ratas
6.
J Allergy Clin Immunol ; 145(2): 679-697.e5, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31513879

RESUMEN

BACKGROUND: Patients with T-cell immunodeficiencies are generally treated with allogeneic hematopoietic stem cell transplantation, but alternatives are needed for patients without matched donors. An innovative intrathymic gene therapy approach that directly targets the thymus might improve outcomes. OBJECTIVE: We sought to determine the efficacy of intrathymic adeno-associated virus (AAV) serotypes to transduce thymocyte subsets and correct the T-cell immunodeficiency in a zeta-associated protein of 70 kDa (ZAP-70)-deficient murine model. METHODS: AAV serotypes were injected intrathymically into wild-type mice, and gene transfer efficiency was monitored. ZAP-70-/- mice were intrathymically injected with an AAV8 vector harboring the ZAP70 gene. Thymus structure, immunophenotyping, T-cell receptor clonotypes, T-cell function, immune responses to transgenes and autoantibodies, vector copy number, and integration were evaluated. RESULTS: AAV8, AAV9, and AAV10 serotypes all transduced thymocyte subsets after in situ gene transfer, with transduction of up to 5% of cells. Intrathymic injection of an AAV8-ZAP-70 vector into ZAP-70-/- mice resulted in a rapid thymocyte differentiation associated with the development of a thymic medulla. Strikingly, medullary thymic epithelial cells expressing the autoimmune regulator were detected within 10 days of gene transfer, correlating with the presence of functional effector and regulatory T-cell subsets with diverse T-cell receptor clonotypes in the periphery. Although thymocyte reconstitution was transient, gene-corrected peripheral T cells harboring approximately 1 AAV genome per cell persisted for more than 40 weeks, and AAV vector integration was detected. CONCLUSIONS: Intrathymic AAV-transduced progenitors promote a rapid restoration of the thymic architecture, with a single wave of thymopoiesis generating long-term peripheral T-cell function.


Asunto(s)
Terapia Genética/métodos , Timocitos , Transducción Genética/métodos , Proteína Tirosina Quinasa ZAP-70 , Animales , Dependovirus , Vectores Genéticos , Síndromes de Inmunodeficiencia/terapia , Ratones , Ratones Noqueados , Proteína Tirosina Quinasa ZAP-70/administración & dosificación , Proteína Tirosina Quinasa ZAP-70/genética
7.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34884622

RESUMEN

Gene therapy (GT) for ocular disorders has advanced the most among adeno-associated virus (AAV)-mediated therapies, with one product already approved in the market. The bank of retinal gene mutations carefully compiled over 30 years, the small retinal surface that does not require high clinical vector stocks, and the relatively immune-privileged environment of the eye explain such success. However, adverse effects due to AAV-delivery, though rare in the retina have led to the interruption of clinical trials. Risk mitigation, as the key to safe and efficient GT, has become the focus of 'bedside-back-to-bench' studies. Herein, we overview the inflammatory adverse events described in retinal GT trials and analyze which components of the retinal immunological environment might be the most involved in these immune responses, with a focus on the innate immune system composed of microglial surveillance. We consider the factors that can influence inflammation in the retina after GT such as viral sensors in the retinal tissue and CpG content in promoters or transgene sequences. Finally, we consider options to reduce the immunological risk, including dose, modified capsids or exclusion criteria for clinical trials. A better understanding and mitigation of immune risk factors inducing host immunity in AAV-mediated retinal GT is the key to achieving safe and efficient GT.


Asunto(s)
Dependovirus/genética , Terapia Genética , Vectores Genéticos/administración & dosificación , Enfermedades de la Retina/terapia , Transducción Genética , Animales , Humanos , Enfermedades de la Retina/genética , Enfermedades de la Retina/inmunología
8.
Gene Ther ; 26(5): 211-215, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30926961

RESUMEN

Adeno-associated virus (AAV) vectors are extensively used for gene therapy clinical trials. Accurate and standardized titration methods are essential for characterizing and dosing AAV-based drugs and thus to assess their safety and efficacy. To this end, the Reference Standard Materials (RSM) working group generated standards for AAV serotype 2 and serotype 8. The AAV8RSM (ATCC® VR-1816™) was deposited to the American Type Culture Collection in 2014 and is available to the scientific community. Here, three independent laboratories of the RSM working group provide stability data of the AAV8RSM 2 years after the initial characterization and after container relabeling performed at the ATCC. The AAV8RSM showed constant titers across experimental conditions: 1.48 ± 0.62 × 1012 vector genome (vg)/ml, 9.38 ± 11.4 × 108 infectious units (IU)/ml and 5.76 ± 2.39 × 1011 total particles (p)/ml as determined by qPCR, TCID50 and ELISA, respectively. Additionally, the AAV8RSM capsid protein integrity assessed by SDS-PAGE was equivalent to the original analyses. In conclusion, the AAV8RSM titers remained stable for two years under appropriate storage conditions ( <-70° C). The use of RSM is strongly recommended and endorsed by regulatory agencies to normalize laboratory internal controls and to provide accurate titration of AAV vectors lots.


Asunto(s)
Dependovirus/química , Vectores Genéticos/normas , Guías de Práctica Clínica como Asunto , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Criopreservación/normas , Dependovirus/genética , Dependovirus/fisiología , Vectores Genéticos/química , Células HEK293 , Humanos , Estabilidad Proteica , Estándares de Referencia , Replicación Viral
9.
Mol Ther ; 26(1): 256-268, 2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-29033008

RESUMEN

The aim of this study was the evaluation of the safety and efficacy of unilateral subretinal injection of the adeno-associated vector (AAV) serotypes 2 and 4 (AAV2/4) RPE65-RPE65 vector in patients with Leber congenital amaurosis (LCA) associated with RPE65 gene deficiency. We evaluated ocular and general tolerance and visual function up to 1 year after vector administration in the most severely affected eye in nine patients with retinal degeneration associated with mutations in the RPE65 gene. Patients received either low (1.22 × 1010 to 2 × 1010 vector genomes [vg]) or high (between 3.27 × 1010 and 4.8 × 1010 vg) vector doses. An ancillary study, in which six of the original nine patients participated, extended the follow-up period to 2-3.5 years. All patients showed good ophthalmological and general tolerance to the rAAV2/4-RPE65-RPE65 vector. We observed a trend toward improved visual acuity in patients with nystagmus, stabilization and improvement of the visual field, and cortical activation along visual pathways during fMRI analysis. OCT analysis after vector administration revealed no retinal thinning, except in cases of macular detachment. Our findings show that the rAAV2/4.RPE65.RPE65 vector was well tolerated in nine patients with RPE65-associated LCA. Efficacy parameters varied between patients during follow-up.


Asunto(s)
Dependovirus/genética , Terapia Genética , Vectores Genéticos/genética , Amaurosis Congénita de Leber/genética , cis-trans-Isomerasas/genética , Adolescente , Adulto , Análisis de Varianza , Niño , Estudios de Seguimiento , Terapia Genética/métodos , Humanos , Amaurosis Congénita de Leber/diagnóstico , Amaurosis Congénita de Leber/metabolismo , Amaurosis Congénita de Leber/terapia , Imagen por Resonancia Magnética , Tomografía de Coherencia Óptica , Campos Visuales , Adulto Joven , cis-trans-Isomerasas/metabolismo
10.
Mol Ther ; 22(9): 1605-13, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24954473

RESUMEN

The robustness and safety of liver-directed gene therapy can be substantially improved by enhancing expression of the therapeutic transgene in the liver. To achieve this, we developed a new approach of rational in silico vector design. This approach relies on a genome-wide bio-informatics strategy to identify cis-acting regulatory modules (CRMs) containing evolutionary conserved clusters of transcription factor binding site motifs that determine high tissue-specific gene expression. Incorporation of these CRMs into adeno-associated viral (AAV) and non-viral vectors enhanced gene expression in mice liver 10 to 100-fold, depending on the promoter used. Furthermore, these CRMs resulted in robust and sustained liver-specific expression of coagulation factor IX (FIX), validating their immediate therapeutic and translational relevance. Subsequent translational studies indicated that therapeutic FIX expression levels could be attained reaching 20-35% of normal levels after AAV-based liver-directed gene therapy in cynomolgus macaques. This study underscores the potential of rational vector design using computational approaches to improve their robustness and therefore allows for the use of lower and thus safer vector doses for gene therapy, while maximizing therapeutic efficacy.


Asunto(s)
Sitios de Unión , Biología Computacional/métodos , Dependovirus/genética , Hígado/metabolismo , Macaca/virología , Factores de Transcripción/genética , Animales , Secuencia de Bases , Secuencia Conservada , Factor IX/genética , Factor IX/metabolismo , Vectores Genéticos/administración & dosificación , Genoma , Humanos , Hígado/virología , Macaca/genética , Ratones , Especificidad de Órganos , Elementos Reguladores de la Transcripción , Factores de Transcripción/metabolismo
11.
Mol Ther ; 22(11): 1923-35, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25200009

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disorder caused by mutations in the dystrophin gene, without curative treatment yet available. Our study provides, for the first time, the overall safety profile and therapeutic dose of a recombinant adeno-associated virus vector, serotype 8 (rAAV8) carrying a modified U7snRNA sequence promoting exon skipping to restore a functional in-frame dystrophin transcript, and injected by locoregional transvenous perfusion of the forelimb. Eighteen Golden Retriever Muscular Dystrophy (GRMD) dogs were exposed to increasing doses of GMP-manufactured vector. Treatment was well tolerated in all, and no acute nor delayed adverse effect, including systemic and immune toxicity was detected. There was a dose relationship for the amount of exon skipping with up to 80% of myofibers expressing dystrophin at the highest dose. Similarly, histological, nuclear magnetic resonance pathological indices and strength improvement responded in a dose-dependent manner. The systematic comparison of effects using different independent methods, allowed to define a minimum threshold of dystrophin expressing fibers (>33% for structural measures and >40% for strength) under which there was no clear-cut therapeutic effect. Altogether, these results support the concept of a phase 1/2 trial of locoregional delivery into upper limbs of nonambulatory DMD patients.


Asunto(s)
Dependovirus/genética , Distrofina/genética , Miembro Anterior/fisiopatología , Distrofia Muscular de Duchenne/terapia , ARN Nuclear Pequeño/genética , Animales , Estudios de Cohortes , Modelos Animales de Enfermedad , Perros , Relación Dosis-Respuesta a Droga , Exones , Terapia Genética , Vectores Genéticos/administración & dosificación , Humanos , Infusiones Intravenosas , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/fisiopatología , ARN Nuclear Pequeño/metabolismo
12.
Hum Gene Ther ; 35(9-10): 355-364, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581431

RESUMEN

Recombinant adeno-associated virus (rAAV) vectors appear, more than ever, to be efficient viral vectors for in vivo gene transfer as illustrated by the approvals of 7 drugs across Europe and the United States. Nevertheless, preexisting immunity to AAV capsid in humans remains one of the major limits for a successful clinical translation. Whereas a preexisting humoral response to AAV capsid is well documented, the prevalence of preexisting capsid-specific T cell responses still needs to be studied and characterized. In this study, we investigated the prevalence of AAV-specific circulating T cells toward AAV2, 4, 5, 8, 9, and rh10 in a large cohort of healthy donors using the standard IFNγ ELISpot assay. We observed the highest prevalence of preexisting cellular immunity to AAV9 serotype followed by AAV8, AAV4, AAV2, AAVrh10, and AAV5 independently of the donors' serological status. An in-depth analysis of T cell responses toward the 2 most prevalent serotypes 8 and 9 shows that IFNγ secretion is mainly mediated by CD8 T cells for both serotypes. A polyfunctional analysis reveals different cytokine profiles between AAV8 and AAV9. Surprisingly, no IL-2 secretion was mediated by anti-AAV9 immune cells suggesting that these cells may rather be exhausted or terminally differentiated than cytotoxic T cells. Altogether, these results suggest that preexisting immunity to AAV may vary depending on the serotype and support the necessity of using multiparametric monitoring methods to better characterize anticapsid cellular immunity and foresee its impact in rAAV-mediated clinical trials.


Asunto(s)
Proteínas de la Cápside , Dependovirus , Vectores Genéticos , Inmunidad Celular , Humanos , Dependovirus/genética , Dependovirus/inmunología , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Vectores Genéticos/genética , Voluntarios Sanos , Cápside/inmunología , Linfocitos T CD8-positivos/inmunología , Interferón gamma/metabolismo , Adulto , Serogrupo , Masculino , Femenino , Citocinas/metabolismo , Linfocitos T/inmunología
13.
bioRxiv ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38106055

RESUMEN

Mutations in the DMD gene lead to Duchenne muscular dystrophy, a severe X-linked neuromuscular disorder that manifests itself as young boys acquire motor functions. DMD is typically diagnosed at 2 to 4 years of age, but the absence of dystrophin negatively impacts muscle structure and function before overt symptoms appear in patients, which poses a serious challenge in the optimization of standards of care. In this report, we investigated the early consequences of dystrophin deficiency during skeletal muscle development. We used single-cell transcriptome profiling to characterize the myogenic trajectory of human pluripotent stem cells and showed that DMD cells bifurcate to an alternative branch when they reach the somite stage. Here, dystrophin deficiency was linked to marked dysregulations of cell junction protein families involved in the cell state transitions characteristic of embryonic somitogenesis. Altogether, this work demonstrates that in vitro, dystrophin deficiency has deleterious effects on cell-cell communication during myogenic development, which should be considered in future therapeutic strategies for DMD.

14.
Biomed Pharmacother ; 171: 116148, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38232661

RESUMEN

Decades of biological and clinical research have led to important advances in recombinant adeno-associated viruses rAAV-based gene therapy gene therapy. However, several challenges must be overcome to fully exploit the potential of rAAV vectors. Innovative approaches to modify viral genome and capsid elements have been used to overcome issues such as unwanted immune responses and off-targeting. While often successful, genetic modification of capsids can drastically reduce vector yield and often fails to produce vectors with properties that translate across different animal species, such as rodents, non-human primates, and humans. Here, we describe a chemical bioconjugation strategy to modify tyrosine residues on AAV capsids using specific ligands, thereby circumventing the need to genetically engineer the capsid sequence. Aromatic electrophilic substitution of the phenol ring of tyrosine residues on AAV capsids improved the in vivo transduction efficiency of rAAV2 vectors in both liver and retinal targets. This tyrosine bioconjugation strategy represents an innovative technology for the engineering of rAAV vectors for human gene therapy.


Asunto(s)
Dependovirus , Terapia Genética , Animales , Transducción Genética , Tirosina/genética , Hígado , Retina , Proteínas de la Cápside/genética , Vectores Genéticos , Técnicas de Transferencia de Gen
15.
Mol Ther Methods Clin Dev ; 32(1): 101187, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38327809

RESUMEN

Inherited retinal diseases are a leading and untreatable cause of blindness and are therefore candidate diseases for gene therapy. Recombinant vectors derived from adeno-associated virus (rAAV) are currently the most promising vehicles for in vivo therapeutic gene delivery to the retina. However, there is a need for novel AAV-based vectors with greater efficacy for ophthalmic applications, as underscored by recent reports of dose-related inflammatory responses in clinical trials of rAAV-based ocular gene therapies. Improved therapeutic efficacy of vectors would allow for decreases in the dose delivered, with consequent reductions in inflammatory reactions. Here, we describe the development of new rAAV vectors using bioconjugation chemistry to modify the rAAV capsid, thereby improving the therapeutic index. Covalent coupling of a mannose ligand, via the formation of a thiourea bond, to the amino groups of the rAAV capsid significantly increases vector transduction efficiency of both rat and nonhuman primate retinas. These optimized rAAV vectors have important implications for the treatment of a wide range of retinal diseases.

16.
Mol Ther Methods Clin Dev ; 28: 387-393, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36874242

RESUMEN

The subretinal injection protocol for the only approved retinal gene therapy (voretigene neparvovec-rzyl) includes air tamponade at the end of the procedure, but its effects on the subretinal bleb have not been described. In the present study, we evaluated the distribution of enhanced green fluorescent protein (EGFP) after subretinal injection of AAV2 in non-human primates (NHP) without (group A = 3 eyes) or with (group B = 3 eyes) air tamponade. The retinal expression of EGFP was assessed 1 month after subretinal injection with in vivo fundus photographs and fundus autofluorescence. In group A (without air), EGFP expression was limited to the area of the initial subretinal bleb. In group B (with air), EGFP was expressed in a much wider area. These data show that the buoyant force of air on the retina causes a wide subretinal diffusion of vector, away from the injection site. In the present paper, we discuss the beneficial and deleterious clinical effects of this finding. Whereas subretinal injection is likely to become more common with the coming of new gene therapies, the effects of air tamponade should be explored further to improve efficacy, reproducibility, and safety of the protocol.

17.
Mol Ther Methods Clin Dev ; 30: 30-47, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37746247

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked disease caused by loss-of-function mutations in the dystrophin gene and is characterized by muscle wasting and early mortality. Adeno-associated virus-mediated gene therapy is being investigated as a treatment for DMD. In the nonclinical study documented here, we determined the effective dose of fordadistrogene movaparvovec, a clinical candidate adeno-associated virus serotype 9 vector carrying a human mini-dystrophin transgene, after single intravenous injection in a dystrophin-deficient (DMDmdx) rat model of DMD. Overall, we found that transduction efficiency, number of muscle fibers expressing the human mini-dystrophin polypeptide, improvement of the skeletal and cardiac muscle tissue architecture, correction of muscle strength and fatigability, and improvement of diastolic and systolic cardiac function were directly correlated with the amount of vector administered. The effective dose was then tested in older DMDmdx rats with a more dystrophic phenotype similar to the pathology observed in older patients with DMD. Except for a less complete rescue of muscle function in the oldest cohort, fordadistrogene movaparvovec was also found to be therapeutically effective in older DMDmdx rats, suggesting that this product may be appropriate for evaluation in patients with DMD at all stages of disease.

18.
Blood ; 115(10): 1913-20, 2010 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-20040762

RESUMEN

The sustained differentiation of T cells in the thymus cannot be maintained by resident intrathymic (IT) precursors and requires that progenitors be replenished from the bone marrow (BM). In patients with severe combined immunodeficiency (SCID) treated by hematopoietic stem cell transplantation, late T-cell differentiation defects are thought to be due to an insufficient entry of donor BM progenitors into the thymus. Indeed, we find that the intravenous injection of BM progenitors into nonconditioned zeta-chain-associated protein kinase 70 (ZAP-70)-deficient mice with SCID supports short- but not long-term thymopoiesis. Remarkably, we now show that the IT administration of these progenitors produces a significant level of donor-derived thymopoiesis for more than 6 months after transplantation. In contrast to physiologic thymopoiesis, long-term donor thymopoiesis was not due to the continued recruitment of progenitors from the BM. Rather, IT transplantation resulted in the unique generation of a large population of early c-Kit(high) donor precursors within the thymus. These ZAP-70-deficient mice that received an IT transplant had a significantly increased prothymocyte niche compared with their untreated counterparts; this phenotype was associated with the generation of a medulla. Thus, IT administration of BM progenitors results in the filling of an expanded precursor niche and may represent a strategy for enhancing T-cell differentiation in patients with SCID.


Asunto(s)
Trasplante de Médula Ósea/métodos , Trasplante de Médula Ósea/fisiología , Células Progenitoras Linfoides/trasplante , Linfopoyesis/fisiología , Timo/citología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Linaje de la Célula/genética , Células Cultivadas , Infusiones Intravenosas , Recuento de Linfocitos , Células Progenitoras Linfoides/fisiología , Linfopoyesis/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nicho de Células Madre/citología , Linfocitos T/citología , Linfocitos T/fisiología , Timo/fisiología , Factores de Tiempo , Proteína Tirosina Quinasa ZAP-70/genética
19.
Hum Gene Ther ; 33(7-8): 371-388, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35293222

RESUMEN

In the past two decades, adeno-associated virus (AAV) vector manufacturing has made remarkable advancements to meet large-scale production demands for preclinical and clinical trials. In addition, AAV vectors have been extensively studied for their safety and efficacy. In particular, the presence of empty AAV capsids and particles containing "inaccurate" vector genomes in preparations has been a subject of concern. Several methods exist to separate empty capsids from full particles; but thus far, no single technique can produce vectors that are free of empty or partial (non-unit length) capsids. Unfortunately, the exact genome compositions of full, intermediate, and empty capsids remain largely unknown. In this work, we used AAV-genome population sequencing to explore the compositions of DNase-resistant, encapsidated vector genomes produced by two common production pipelines: plasmid transfection in human embryonic kidney cells (pTx/HEK293) and baculovirus expression vectors in Spodoptera frugiperda insect cells (rBV/Sf9). Intriguingly, our results show that vectors originating from the same construct design that were manufactured by the rBV/Sf9 system produced a higher degree of truncated and unresolved species than those generated by pTx/HEK293 production. We also demonstrate that empty particles purified by cesium chloride gradient ultracentrifugation are not truly empty but are instead packaged with genomes composed of a single truncated and/or unresolved inverted terminal repeat (ITR). Our data suggest that the frequency of these "mutated" ITRs correlates with the abundance of inaccurate genomes in all fractions. These surprising findings shed new light on vector efficacy, safety, and how clinical vectors should be quantified and evaluated.


Asunto(s)
Dependovirus , Vectores Genéticos , Animales , Baculoviridae/genética , Dependovirus/genética , Dependovirus/metabolismo , Vectores Genéticos/genética , Células HEK293 , Humanos , Insectos/genética
20.
Cell Stem Cell ; 29(10): 1428-1444.e9, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36206730

RESUMEN

Long-range gene editing by homology-directed repair (HDR) in hematopoietic stem/progenitor cells (HSPCs) often relies on viral transduction with recombinant adeno-associated viral vector (AAV) for template delivery. Here, we uncover unexpected load and prolonged persistence of AAV genomes and their fragments, which trigger sustained p53-mediated DNA damage response (DDR) upon recruiting the MRE11-RAD50-NBS1 (MRN) complex on the AAV inverted terminal repeats (ITRs). Accrual of viral DNA in cell-cycle-arrested HSPCs led to its frequent integration, predominantly in the form of transcriptionally competent ITRs, at nuclease on- and off-target sites. Optimized delivery of integrase-defective lentiviral vector (IDLV) induced lower DNA load and less persistent DDR, improving clonogenic capacity and editing efficiency in long-term repopulating HSPCs. Because insertions of viral DNA fragments are less frequent with IDLV, its choice for template delivery mitigates the adverse impact and genotoxic burden of HDR editing and should facilitate its clinical translation in HSPC gene therapy.


Asunto(s)
ADN Viral , Proteína p53 Supresora de Tumor , Sistemas CRISPR-Cas , Daño del ADN , Edición Génica , Células Madre Hematopoyéticas , Humanos , Integrasas , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA