Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 170(1): 86-101.e16, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28666128

RESUMEN

Through an integration of genomic and proteomic approaches to advance understanding of long noncoding RNAs, we investigate the function of the telomeric transcript, TERRA. By identifying thousands of TERRA target sites in the mouse genome, we demonstrate that TERRA can bind both in cis to telomeres and in trans to genic targets. We then define a large network of interacting proteins, including epigenetic factors, telomeric proteins, and the RNA helicase, ATRX. TERRA and ATRX share hundreds of target genes and are functionally antagonistic at these loci: whereas TERRA activates, ATRX represses gene expression. At telomeres, TERRA competes with telomeric DNA for ATRX binding, suppresses ATRX localization, and ensures telomeric stability. Depleting TERRA increases telomerase activity and induces telomeric pathologies, including formation of telomere-induced DNA damage foci and loss or duplication of telomeric sequences. We conclude that TERRA functions as an epigenomic modulator in trans and as an essential regulator of telomeres in cis.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , ARN Largo no Codificante/metabolismo , Telómero/metabolismo , Animales , Ensayo de Cambio de Movilidad Electroforética , Ratones , Motivos de Nucleótidos , Células Madre/metabolismo , Telomerasa/metabolismo , Proteína Nuclear Ligada al Cromosoma X
2.
Cell ; 160(5): 811-813, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25723159

RESUMEN

Nuclear receptors bind chromosome ends in "alternative lengthening of telomeres" (ALT) cancer cells that maintain their ends by homologous recombination instead of telomerase. Marzec et al. now demonstrate that, in ALT cells, nuclear receptors not only trigger distal chromatin associations to mediate telomere-telomere recombination events, but also drive chromosome-internal targeted telomere insertions (TTI).


Asunto(s)
Inestabilidad Genómica , Neoplasias/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Telómero/metabolismo , Humanos
3.
Mol Cell ; 61(2): 274-86, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26774283

RESUMEN

The shelterin proteins protect telomeres against activation of the DNA damage checkpoints and recombinational repair. We show here that a dimer of the shelterin subunit TRF2 wraps ∼ 90 bp of DNA through several lysine and arginine residues localized around its homodimerization domain. The expression of a wrapping-deficient TRF2 mutant, named Top-less, alters telomeric DNA topology, decreases the number of terminal loops (t-loops), and triggers the ATM checkpoint, while still protecting telomeres against non-homologous end joining (NHEJ). In Top-less cells, the protection against NHEJ is alleviated if the expression of the TRF2-interacting protein RAP1 is reduced. We conclude that a distinctive topological state of telomeric DNA, controlled by the TRF2-dependent DNA wrapping and linked to t-loop formation, inhibits both ATM activation and NHEJ. The presence of RAP1 at telomeres appears as a backup mechanism to prevent NHEJ when topology-mediated telomere protection is impaired.


Asunto(s)
ADN/química , Conformación de Ácido Nucleico , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Emparejamiento Base , ADN/metabolismo , Daño del ADN , Reparación del ADN por Unión de Extremidades , Células HeLa , Humanos , Lisina/metabolismo , Modelos Moleculares , Mutación , Estructura Terciaria de Proteína , Complejo Shelterina , Transducción de Señal , Proteínas de Unión a Telómeros/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/química
4.
Nat Rev Genet ; 18(6): 377-389, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28479596

RESUMEN

Extensive 3D folding is required to package a genome into the tiny nuclear space, and this packaging must be compatible with proper gene expression. Thus, in the well-hierarchized nucleus, chromosomes occupy discrete territories and adopt specific 3D organizational structures that facilitate interactions between regulatory elements for gene expression. The mammalian X chromosome exemplifies this structure-function relationship. Recent studies have shown that, upon X-chromosome inactivation, active and inactive X chromosomes localize to different subnuclear positions and adopt distinct chromosomal architectures that reflect their activity states. Here, we review the roles of long non-coding RNAs, chromosomal organizational structures and the subnuclear localization of chromosomes as they relate to X-linked gene expression.


Asunto(s)
Cromosoma X/química , Animales , Expresión Génica , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Inactivación del Cromosoma X
5.
Nucleic Acids Res ; 38(17): 5833-43, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20444878

RESUMEN

Nuclear-encoded tRNAs are universally transcribed by RNA polymerase III (Pol-III) and contain intragenic promoters. Transcription of vertebrate tRNA(Sec) however requires extragenic promoters similar to Pol-III transcribed U6 snRNA. Here, we present a comparative analysis of tRNA(Sec) transcription in humans and the parasitic protozoa Trypanosoma brucei, two evolutionary highly diverged eukaryotes. RNAi-mediated ablation of Pol-II and Pol-III as well as oligo-dT induced transcription termination show that the human tRNA(Sec) is a Pol-III transcript. In T. brucei protein-coding genes are polycistronically transcribed by Pol-II and processed by trans-splicing and polyadenylation. tRNA genes are generally clustered in between polycistrons. However, the trypanosomal tRNA(Sec) genes are embedded within a polycistron. Their transcription is sensitive to α-amanitin and RNAi-mediated ablation of Pol-II, but not of Pol-III. Ectopic expression of the tRNA(Sec) outside but not inside a polycistron requires an added external promoter. These experiments demonstrate that trypanosomal tRNA(Sec), in contrast to its human counterpart, is transcribed by Pol-II. Synteny analysis shows that in trypanosomatids the tRNA(Sec) gene can be found in two different polycistrons, suggesting that it has evolved twice independently. Moreover, intron-encoded tRNAs are present in a number of eukaryotic genomes indicating that Pol-II transcription of tRNAs may not be restricted to trypanosomatids.


Asunto(s)
ARN Polimerasa II/metabolismo , ARN de Transferencia Aminoácido-Específico/genética , Trypanosoma brucei brucei/genética , Alfa-Amanitina/farmacología , Secuencia de Bases , Células HeLa , Humanos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Polimerasa II/antagonistas & inhibidores , ARN de Transferencia Aminoácido-Específico/biosíntesis , Transcripción Genética/efectos de los fármacos
6.
Proc Natl Acad Sci U S A ; 106(13): 5088-92, 2009 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-19279205

RESUMEN

The micronutrient selenium is found in proteins as selenocysteine (Sec), the 21st amino acid cotranslationally inserted in response to a UGA codon. In vitro studies in archaea and mouse showed that Sec-tRNA(Sec) formation is a 3-step process starting with serylation of tRNA(Sec) by seryl-tRNA synthetase (SerRS), phosphorylation of serine to form phosphoserine (Sep)-tRNA(Sec) by phosphoseryl-tRNA(Sec) kinase (PSTK), and conversion to Sec-tRNA(Sec) by Sep-tRNA:Sec-tRNA synthase (SepSecS). However, a complete study of eukaryotic selenoprotein synthesis has been lacking. Here, we present an analysis of Sec-tRNA(Sec) formation in the parasitic protozoon Trypanosoma brucei in vivo. Null mutants of either PSTK or SepSecS abolished selenoprotein synthesis, demonstrating the essentiality of both enzymes for Sec-tRNA(Sec) formation. Growth of the 2 knockout strains was not impaired; thus, unlike mammals, trypanosomes do not require selenoproteins for viability. Analysis of conditional RNAi strains showed that SerRS, selenophosphate synthase, and the Sec-specific elongation factor, EFSec, are also essential for selenoprotein synthesis. These results with T. brucei imply that eukaryotes have a single pathway of Sec-tRNA(Sec) synthesis that requires Sep-tRNA(Sec) as an intermediate.


Asunto(s)
Redes y Vías Metabólicas , Selenocisteína/metabolismo , Selenoproteínas/biosíntesis , Trypanosoma brucei brucei/metabolismo , Animales , Archaea , Ratones , Fosfotransferasas/metabolismo , ARN de Transferencia Aminoácido-Específico/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Trypanosoma brucei brucei/enzimología
7.
Mol Microbiol ; 76(3): 706-18, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20374492

RESUMEN

Apicomplexans possess three translationally active compartments: the cytosol, a single tubular mitochondrion, and a vestigial plastid organelle called apicoplast. Mitochondrion and apicoplast are of bacterial evolutionary origin and therefore depend on a bacterial-like translation machinery. The minimal mitochondrial genome contains only three ORFs, and in Toxoplasma gondii the absence of mitochondrial tRNA genes is compensated for by the import of cytosolic eukaryotic tRNAs. Although all compartments require a complete set of charged tRNAs, the apicomplexan nuclear genomes do not hold sufficient aminoacyl-tRNA synthetase (aaRSs) genes to be targeted individually to each compartment. This study reveals that aaRSs are either cytosolic, apicoplastic or shared between the two compartments by dual targeting but are absent from the mitochondrion. Consequently, tRNAs are very likely imported in their aminoacylated form. Furthermore, the unexpected absence of tRNA(Met) formyltransferase and peptide deformylase implies that the requirement for a specialized formylmethionyl-tRNA(Met) for translation initiation is bypassed in the mitochondrion of Apicomplexa.


Asunto(s)
Apicomplexa/metabolismo , Mitocondrias/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia de Metionina/metabolismo , Aminoacilación de ARN de Transferencia , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Apicomplexa/genética , Mitocondrias/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , ARN de Transferencia de Metionina/genética
8.
EMBO J ; 26(20): 4302-12, 2007 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-17853889

RESUMEN

Mitochondrial tRNA import is widespread in eukaryotes. Yet, the mechanism that determines its specificity is unknown. Previous in vivo experiments using the tRNAs(Met), tRNA(Ile) and tRNA(Lys) have suggested that the T-stem nucleotide pair 51:63 is the main localization determinant of tRNAs in Trypanosoma brucei. In the cytosol-specific initiator tRNA(Met), this nucleotide pair is identical to the main antideterminant that prevents interaction with cytosolic elongation factor (eEF1a). Here we show that ablation of cytosolic eEF1a, but not of initiation factor 2, inhibits mitochondrial import of newly synthesized tRNAs well before translation or growth is affected. tRNA(Sec) is the only other cytosol-specific tRNA in T. brucei. It has its own elongation factor and does not bind eEF1a. However, a mutant of the tRNA(Sec) expected to bind to eEF1a is imported into mitochondria. This import requires eEF1a and aminoacylation of the tRNA. Thus, for a tRNA to be imported into the mitochondrion of T. brucei, it needs to bind eEF1a, and it is this interaction that mediates the import specificity.


Asunto(s)
Mitocondrias/metabolismo , Factor 1 de Elongación Peptídica/fisiología , ARN de Transferencia/metabolismo , Trypanosoma brucei brucei/metabolismo , Animales , Secuencia de Bases , Bioquímica/métodos , Citosol/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Interferencia de ARN , ARN de Transferencia/química , Selenocisteína/química , Fracciones Subcelulares/metabolismo , Trypanosoma/metabolismo
9.
Nat Struct Mol Biol ; 28(1): 103-117, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33398172

RESUMEN

Although polycomb repressive complex 2 (PRC2) is now recognized as an RNA-binding complex, the full range of binding motifs and why PRC2-RNA complexes often associate with active genes have not been elucidated. Here, we identify high-affinity RNA motifs whose mutations weaken PRC2 binding and attenuate its repressive function in mouse embryonic stem cells. Interactions occur at promoter-proximal regions and frequently coincide with pausing of RNA polymerase II (POL-II). Surprisingly, while PRC2-associated nascent transcripts are highly expressed, ablating PRC2 further upregulates expression via loss of pausing and enhanced transcription elongation. Thus, PRC2-nascent RNA complexes operate as rheostats to fine-tune transcription by regulating transitions between pausing and elongation, explaining why PRC2-RNA complexes frequently occur within active genes. Nascent RNA also targets PRC2 in cis and downregulates neighboring genes. We propose a unifying model in which RNA specifically recruits PRC2 to repress genes through POL-II pausing and, more classically, trimethylation of histone H3 at Lys27.


Asunto(s)
Regulación de la Expresión Génica/genética , Complejo Represivo Polycomb 2/metabolismo , Biosíntesis de Proteínas/fisiología , ARN Polimerasa II/metabolismo , ARN/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular , Células Madre Embrionarias/metabolismo , Histonas/metabolismo , Metilación , Ratones , Motivos de Nucleótidos/genética , Regiones Promotoras Genéticas/genética , Biosíntesis de Proteínas/genética , ARN/genética , Transcripción Genética/genética , Activación Transcripcional/genética
10.
Nat Cell Biol ; 22(9): 1116-1129, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32807903

RESUMEN

How allelic asymmetry is generated remains a major unsolved problem in epigenetics. Here we model the problem using X-chromosome inactivation by developing "BioRBP", an enzymatic RNA-proteomic method that enables probing of low-abundance interactions and an allelic RNA-depletion and -tagging system. We identify messenger RNA-decapping enzyme 1A (DCP1A) as a key regulator of Tsix, a noncoding RNA implicated in allelic choice through X-chromosome pairing. DCP1A controls Tsix half-life and transcription elongation. Depleting DCP1A causes accumulation of X-X pairs and perturbs the transition to monoallelic Tsix expression required for Xist upregulation. While ablating DCP1A causes hyperpairing, forcing Tsix degradation resolves pairing and enables Xist upregulation. We link pairing to allelic partitioning of CCCTC-binding factor (CTCF) and show that tethering DCP1A to one Tsix allele is sufficient to drive monoallelic Xist expression. Thus, DCP1A flips a bistable switch for the mutually exclusive determination of active and inactive Xs.


Asunto(s)
Endorribonucleasas/metabolismo , ARN/metabolismo , Transactivadores/metabolismo , Cromosoma X/metabolismo , Alelos , Animales , Factor de Unión a CCCTC/metabolismo , Línea Celular , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Transcripción Genética/fisiología , Regulación hacia Arriba/fisiología , Inactivación del Cromosoma X/fisiología
11.
Cell Rep ; 17(12): 3107-3114, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-28009281

RESUMEN

Oxidative damage of telomeres can promote cancer, cardiac failure, and muscular dystrophy. Specific mechanisms protecting telomeres from oxidative damage have not been described. We analyzed telomeric chromatin composition during the cell cycle and show that the antioxidant enzyme peroxiredoxin 1 (PRDX1) is enriched at telomeres during S phase. Deletion of the PRDX1 gene leads to damage of telomeric DNA upon oxidative stress, revealing a protective function of PRDX1 against oxidative damage at telomeres. We also show that the oxidized nucleotide 8-oxo-2'deoxyguanosine-5'-triphosphate (8oxodGTP) causes premature chain termination when incorporated by telomerase and that some DNA substrates terminating in 8oxoG prevent extension by telomerase. Thus, PRDX1 safeguards telomeres from oxygen radicals to counteract telomere damage and preserve telomeric DNA for elongation by telomerase.


Asunto(s)
Heterocromatina/genética , Estrés Oxidativo/genética , Peroxirredoxinas/genética , Telómero/genética , 8-Hidroxi-2'-Desoxicoguanosina , Ciclo Celular , Cromatina/genética , ADN/genética , Daño del ADN/genética , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Humanos , Peroxirredoxinas/metabolismo , Especies Reactivas de Oxígeno/toxicidad , Telomerasa/genética
12.
Nat Commun ; 4: 2848, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24270157

RESUMEN

Telomere composition changes during tumourigenesis, aging and in telomere syndromes in a poorly defined manner. Here we develop a quantitative telomeric chromatin isolation protocol (QTIP) for human cells, in which chromatin is cross-linked, immunopurified and analysed by mass spectrometry. QTIP involves stable isotope labelling by amino acids in cell culture (SILAC) to compare and identify quantitative differences in telomere protein composition of cells from various states. With QTIP, we specifically enrich telomeric DNA and all shelterin components. We validate the method characterizing changes at dysfunctional telomeres, and identify and validate known, as well as novel telomere-associated polypeptides including all THO subunits, SMCHD1 and LRIF1. We apply QTIP to long and short telomeres and detect increased density of SMCHD1 and LRIF1 and increased association of the shelterins TRF1, TIN2, TPP1 and POT1 with long telomeres. Our results validate QTIP to study telomeric states during normal development and in disease.


Asunto(s)
Bioquímica/métodos , Heterocromatina/aislamiento & purificación , Proteínas/aislamiento & purificación , Telómero/química , ADN/genética , ADN/metabolismo , Células HeLa , Heterocromatina/química , Heterocromatina/metabolismo , Humanos , Espectrometría de Masas , Unión Proteica , Proteínas/genética , Proteínas/metabolismo , Complejo Shelterina , Telómero/metabolismo , Acortamiento del Telómero , Proteínas de Unión a Telómeros
13.
Mol Biochem Parasitol ; 168(2): 191-3, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19723543

RESUMEN

Here we show that absence of Sep-tRNA:Sec-tRNA synthase (SepSecS) a key enzyme required for the synthesis of the three trypanosomal selenoproteins does not affect growth of bloodstream forms of Trypanosoma brucei. Both life cycle stages of T. brucei are highly sensitive to auranofin, a compound known to target selenoproteins. However, the same sensitivity is observed in the SepSecS double knockout cell lines indicating that the trypanocidal action of auranofin is not connected to selenoproteins. Finally, we show that absence of selenoproteins does not increase sensitivity to H(2)O(2)-induced oxidative stress. Thus in cell culture normal growth of procyclic and bloodstream T. brucei does not depend on selenoproteins.


Asunto(s)
Selenoproteínas/fisiología , Trypanosoma brucei brucei/fisiología , Aminoacil-ARNt Sintetasas/genética , Animales , Auranofina/farmacología , Técnicas de Inactivación de Genes , Peróxido de Hidrógeno/farmacología , Tripanocidas/farmacología
14.
J Biol Chem ; 281(50): 38217-25, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17040903

RESUMEN

Trypanosomatids are important human pathogens that form a basal branch of eukaryotes. Their evolutionary history is still unclear as are many aspects of their molecular biology. Here we characterize essential components required for the incorporation of serine and selenocysteine into the proteome of Trypanosoma. First, the biological function of a putative Trypanosoma seryl-tRNA synthetase was characterized in vivo. Secondly, the molecular recognition by Trypanosoma seryl-tRNA synthetase of its cognate tRNAs was dissected in vitro. The cellular distribution of tRNA(Sec) was studied, and the catalytic constants of its aminoacylation were determined. These were found to be markedly different from those reported in other organisms, indicating that this reaction is particularly efficient in trypanosomatids. Our functional data were analyzed in the context of a new phylogenetic analysis of eukaryotic seryl-tRNA synthetases that includes Trypanosoma and Leishmania sequences. Our results show that trypanosomatid seryl-tRNA synthetases are functionally and evolutionarily more closely related to their metazoan homologous enzymes than to other eukaryotic enzymes. This conclusion is supported by sequence synapomorphies that clearly connect metazoan and trypanosomatid seryl-tRNA synthetases.


Asunto(s)
ARN de Transferencia/metabolismo , Serina-ARNt Ligasa/metabolismo , Trypanosoma/enzimología , Acilación , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Catálisis , Clonación Molecular , Cartilla de ADN , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN de Transferencia/química , Homología de Secuencia de Aminoácido , Serina-ARNt Ligasa/química , Serina-ARNt Ligasa/genética , Serina-ARNt Ligasa/aislamiento & purificación , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA