Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Small ; 19(18): e2205778, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36732842

RESUMEN

The piezo-phototronic effect shows promise with regards to improving the performance of 2D semiconductor-based flexible optoelectronics, which will potentially open up new opportunities in the electronics field. Mechanical exfoliation and chemical vapor deposition (CVD) influence the piezo-phototronic effect on a transparent, ultrasensitive, and flexible van der Waals (vdW) heterostructure, which allows the use of intrinsic semiconductors, such as 2D transition metal dichalcogenides (TMD). The latest and most promising 2D TMD-based photodetectors and piezo-phototronic devices are discussed in this review article. As a result, it is possible to make flexible piezo-phototronic photodetectors, self-powered sensors, and higher strain tolerance wearable and implantable electronics for health monitoring and generation of piezoelectricity using just a single semiconductor or vdW heterostructures of various nanomaterials. A comparison is also made between the functionality and distinctive properties of 2D flexible electronic devices with a range of applications made from 2D TMDs materials. The current state of the research about 2D TMDs can be applied in a variety of ways in order to aid in the development of new types of nanoscale optoelectronic devices. Last, it summarizes the problems that are currently being faced, along with potential solutions and future prospects.

2.
Small ; 19(1): e2205418, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36373722

RESUMEN

Transition metal dichalcogenides (TMDs) van der Waals (vdW) 1D heterostructures are recently synthesized from 2D nanosheets, which open up new opportunities for potential applications in electronic and optoelectronic devices. The most recent and promising strategies in regards to forming 1D TMDs nanotubes (NTs) or nanoscrolls (NSs) in this review article as well as their heterostructures that are produced from 2D TMDs are summarized. In order to improve the functionality of ultrathin 1D TMDs that are coaxially combined with boron nitride nanotubes and single-walled carbon nanotubes. 1D heterostructured devices perform better than 2D TMD nanosheets when the two devices are compared. The photovoltaic effect in WS2 or MoS2 NTs without a junction may exceed the Shockley-Queisser limit for the above-band-gap photovoltage generation. Photoelectrochemical hydrogen evolution is accelerated when monolayer WS2 or MoS2 NSs are incorporated into a heterojunction. In addition, the photovoltaic performance of the WSe2 /MoS2  NSs junction is superior to that of the performance of MoS2 NSs. The summary of the current research about 1D TMDs can be used in a variety of ways, which assists in the development of new types of nanoscale optoelectronic devices. Finally, it also summarizes the current challenges and prospects.

3.
Nanotechnology ; 32(28)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33535197

RESUMEN

Two-dimensional (2D) materials can be implemented in several functional devices for future optoelectronics and electronics applications. Remarkably, recent research on p-n diodes by stacking 2D materials in heterostructures or homostructures (out of plane) has been carried out extensively with novel designs that are impossible with conventional bulk semiconductor materials. However, the insight of a lateral p-n diode through a single nanoflake based on 2D material needs attention to facilitate the miniaturization of device architectures with efficient performance. Here, we have established a physical carrier-type inversion technique to invert the polarity of MoTe2-based field-effect transistors (FETs) with deep ultraviolet (DUV) doping in (oxygen) O2and (nitrogen) N2gas environments. A p-type MoTe2nanoflake transformed its polarity to n-type when irradiated under DUV illumination in an N2gaseous atmosphere, and it returned to its original state once irradiated in an O2gaseous environment. Further, Kelvin probe force microscopy (KPFM) measurements were employed to support our findings, where the value of the work function changed from ∼4.8 and ∼4.5 eV when p-type MoTe2inverted to the n-type, respectively. Also, using this approach, an in-plane homogeneous p-n junction was formed and achieved a diode rectifying ratio (If/Ir) up to ∼3.8 × 104. This effective approach for carrier-type inversion may play an important role in the advancement of functional devices.

4.
Nanotechnology ; 29(4): 045201, 2018 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-29192890

RESUMEN

P-N junctions represent the fundamental building blocks of most semiconductors for optoelectronic functions. This work demonstrates a technique for forming a WS2/Si van der Waals junction based on mechanical exfoliation. Multilayered WS2 nanoflakes were exfoliated on the surface of bulk p-type Si substrates using a polydimethylsiloxane stamp. We found that the fabricated WS2/Si p-n junctions exhibited rectifying characteristics. We studied the effect of annealing processes on the performance of the WS2/Si van der Waals p-n junction and demonstrated that annealing improved its electrical characteristics. However, devices with vacuum annealing have an enhanced forward-bias current compared to those annealed in a gaseous environment. We also studied the top-gate-tunable rectification characteristics across the p-n junction interface in experiments as well as density functional theory calculations. Under various temperatures, Zener breakdown occurred at low reverse-bias voltages, and its breakdown voltage exhibited a negative coefficient of temperature. Another breakdown voltage was observed, which increased with temperature, suggesting a positive coefficient of temperature. Therefore, such a breakdown can be assigned to avalanche breakdown. This work demonstrates a promising application of two-dimensional materials placed directly on conventional bulk Si substrates.

5.
Nanoscale ; 16(2): 765-776, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38088682

RESUMEN

This study examines the effects of hybrid nanoparticles made of NiO@rGO (reduced graphene oxide) and NiO@CNT (carbon nanotubes) on PCDTBT and PCBM active layers in glass/ITO/HTL/active-layer/LiF/Al structured bulk heterojunction (BHJ) polymer solar cells (PSCs) and X-ray photodetectors. These hybrid nanoparticles were used to create BHJ solar cells and photodetectors, and microscopic research was conducted to determine how they affect the structure of the devices. The findings show that compared to conventional matrices, the active layers with NiO@rGO and NiO@CNT incorporation have increased the charge carrier capacities and exciton dissociation properties. In order to assess their impact on the characteristics of charge transport, various weight ratios of these hybrid nanoparticles dispersed in polymer junctions are being investigated. Notably, compared to the pure PCDTBT:PCBM active layer (power conversion efficiency (PCE) = 4.35%), the NiO@CNT device has the highest PCE = 6.42% which, among the tested configurations, demonstrates its superior performance in converting sunlight into electricity. Among the tested X-ray detector materials, "NiO@CNT" achieves the best performance with a sensitivity of 1.92 mA Gy-1 cm-2. Through improved interfacial behaviors and effective charge transport, this work highlights the potential of these cutting-edge hybrid nanoparticles to enhance the performance of organic electronic devices.

6.
Nanoscale ; 16(5): 2097-2120, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38204422

RESUMEN

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as a highly promising platform for the development of photodetectors (PDs) owing to their remarkable electronic and optoelectronic properties. Highly effective PDs can be obtained by making use of the exceptional properties of 2D materials, such as their high transparency, large charge carrier mobility, and tunable electronic structure. The photodetection mechanism in 2D TMD-based PDs is thoroughly discussed in this article, with special attention paid to the key characteristics that set them apart from PDs based on other integrated materials. This review examines how single TMDs, TMD-TMD heterostructures, TMD-graphene (Gr) hybrids, TMD-MXene composites, TMD-perovskite heterostructures, and TMD-quantum dot (QD) configurations show advanced photodetection. Additionally, a thorough analysis of the recent developments in 2D TMD-based PDs, highlighting their exceptional performance capabilities, including ultrafast photo response, ultrabroad detectivity, and ultrahigh photoresponsivity, attained through cutting-edge methods is provided. The article conclusion highlights the potential for ground-breaking discoveries in this fast developing field of research by outlining the challenges faced in the field of PDs today and providing an outlook on the prospects of 2D TMD-based PDs in the future.

7.
RSC Adv ; 14(27): 18957-18969, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38873549

RESUMEN

Efficient conversion of solar power to electrical power through the development of smart, reliable, and environmentally friendly materials is a key focus for the next-generation renewable energy sector. The involvement of degradable and toxic elements present in hybrid perovskites presents serious concerns regarding the commercial viability of these materials for the solar cell industry. In this study, a solar cell with a stable, nondegradable, and lead-free halide-based double perovskite Cs2AgBiBr6 as the absorber layer, Cu2O as a hole transport layer, and GO as the electron transport layer has been simulated using SCAPS 1D. The thickness of the absorber, electron transport, and hole transport layers are tuned to optimize the performance of the designed solar cell. Notably, perovskite solar cells functioned most efficiently with an electron affinity value of 4.0 eV for Cu2O. In addition, the effect of variation of series resistance and temperature on generation and recombination rates, current density, and quantum efficiency has been elaborated in detail. The findings of this study provide valuable insight and encouragement toward the realization of a non-toxic, inorganic perovskite solar device and will be a significant step forward in addressing environmental concerns associated with perovskite solar cell technology.

8.
ACS Sens ; 9(1): 9-22, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38156963

RESUMEN

It is crucial for early stage medical diagnostics to identify disease biomarkers at ultralow concentrations. A wide range of analytes can be identified using low-dimensional materials to build highly sensitive, targeted, label-free, field-effect transistor (FET) biosensors. Two-dimensional (2D) materials are preferable for high-performance biosensing because of their dramatic change in resistivity upon analyte adsorption or biomarker detection, tunable electronic properties, high surface activities, adequate stability, and layer-dependent semiconducting properties. We give a succinct overview of interesting applications for protein sensing with various architectural styles, such as 2D transition metal dichalcogenides (TMDs)-based FETs that include carbon nanotubes (CNTs), graphene (Gr), reduced graphene oxide (rGr), 2D transition-metal carbides (MXene), and Gr/MXene heterostructures. Because it might enable individuals to perform better, this review will be an important contribution to the field of medical science. These achievements demonstrate point-of-care diagnostics' abilities to detect biomarkers at ultrahigh performance levels. A summary of the present opportunities and challenges appears in the conclusion.


Asunto(s)
Nanoestructuras , Nanotubos de Carbono , Nitritos , Elementos de Transición , Humanos , Nanotubos de Carbono/química , Nanoestructuras/química , Elementos de Transición/química , Biomarcadores
9.
ACS Appl Mater Interfaces ; 16(8): 10104-10115, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38361321

RESUMEN

Hierarchical porous nanowire-like MoS2/CoNiO2 nanohybrids were synthesized via the hydrothermal process. CoNiO2 nanowires were selected due to the edge site, high surface/volume ratio, and superior electrochemical characteristics as the porous backbone for decoration of layered MoS2 nanoflakes to construct innovative structure hierarchical three-dimensional (3D) porous NWs MoS2/CoNiO2 hybrids with excellent charge accumulation and efficient ion transport capabilities. Physicochemical analyses were conducted on the developed hybrid composite, revealing conclusive evidence that the CoNiO2 nanowires have been securely anchored onto the surface of the MoS2 nanoflake array. The electrochemical results strongly proved the benefit of the hierarchical 3D porous MoS2/CoNiO2 hybrid structure for the charge storage kinetics. The synergistic characteristics arising from the MoS2/CoNiO2 composite yielded a notably high specific capacitance of 1340 F/g at a current density of 0.5 A/g. Furthermore, the material exhibited sustained cycling stability, retaining 95.6% of its initial capacitance after 10 000 long cycles. The asymmetric device comprising porous MoS2/CoNiO2//activated carbon encompassed outstanding energy density (93.02 Wh/kg at 0.85 kW/kg) and cycling stability (94.1% capacitance retention after 10 000 cycles). Additionally, the successful illumination of light-emitting diodes underscores the significant potential of the synthesized MoS2/CoNiO2 (2D/1D) hybrid for practical high-energy storage applications.

10.
Nanomicro Lett ; 16(1): 215, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874816

RESUMEN

MXene has garnered widespread recognition in the scientific community due to its remarkable properties, including excellent thermal stability, high conductivity, good hydrophilicity and dispersibility, easy processability, tunable surface properties, and admirable flexibility. MXenes have been categorized into different families based on the number of M and X layers in Mn+1Xn, such as M2X, M3X2, M4X3, and, recently, M5X4. Among these families, M2X and M3X2, particularly Ti3C2, have been greatly explored while limited studies have been given to M5X4 MXene synthesis. Meanwhile, studies on the M4X3 MXene family have developed recently, hence, demanding a compilation of evaluated studies. Herein, this review provides a systematic overview of the latest advancements in M4X3 MXenes, focusing on their properties and applications in energy storage devices. The objective of this review is to provide guidance to researchers on fostering M4X3 MXene-based nanomaterials, not only for energy storage devices but also for broader applications.

11.
Nanoscale ; 15(8): 3651-3665, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36734944

RESUMEN

Two-dimensional (2D) layered semiconductors are appealing materials for high-specific-power photovoltaic systems due to their unique optoelectronic properties. The 2D materials can be naturally thin, and their properties can be altered in a variety of ways. Therefore, these materials may be used to develop high-performance opto-spintronic and photovoltaic devices. The most recent and promising strategies were used to induce circular photo-galvanic effects (CPGEs) in 2D TMD materials with broken inversion symmetry. The majority of quantum devices were manufactured by mechanical exfoliation to investigate the electrical behavior of ultrathin 2D materials. The investigation of CPGEs in 2D materials could enable the exploration of spin-polarized optoelectronics to produce more energy-efficient computing systems. The current research on nanomaterial-based materials paves the way for developing materials to store, manipulate, and transmit information with better performance. Finally, this study concludes by summarizing the current challenges and prospects.

12.
Adv Mater ; 35(42): e2301280, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37104492

RESUMEN

2D materials with dangling-bond-free surfaces and atomically thin layers have been shown to be capable of being incorporated into flexible electronic devices. The electronic and optical properties of 2D materials can be tuned or controlled in other ways by using the intriguing strain engineering method. The latest and encouraging techniques in regard to creating flexible 2D nanoelectronics are condensed in this review. These techniques have the potential to be used in a wider range of applications in the near and long term. It is possible to use ultrathin 2D materials (graphene, BP, WTe2 , VSe2 etc.) and 2D transition metal dichalcogenides (2D TMDs) in order to enable the electrical behavior of the devices to be studied. A category of materials is produced on smaller scales by exfoliating bulk materials, whereas chemical vapor deposition (CVD) and epitaxial growth are employed on larger scales. This overview highlights two distinct requirements, which include from a single semiconductor or with van der Waals heterostructures of various nanomaterials. They include where strain must be avoided and where it is required, such as solutions to produce strain-insensitive devices, and such as pressure-sensitive outcomes, respectively. Finally, points-of-view about the current difficulties and possibilities in regard to using 2D materials in flexible electronics are provided.

13.
Nanoscale ; 15(8): 3610-3629, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36728545

RESUMEN

Two-dimensional (2D) van der Waals (vdW) heterostructured transition metal dichalcogenides (TMDs) open up new possibilities for a wide range of optoelectronic applications. Interlayer couplings are responsible for several fascinating physics phenomena, which are in addition to the multifunctionalities that have been discovered in the field of optoelectronics. These couplings can influence the overall charge, or the energy transfer processes via stacking, separation, and dielectric angles. This focused review article summarizes the most recent and promising strategies for interlayer exciton emission in 2D or integrated perovskites and TMD heterostructures. These types of devices require a thorough comprehension and effective control of interlayer couplings in order to realize their functionalities and improve performance, which is demonstrated in this article with the energy or charge transfer mechanisms in the individual devices. An ideal platform for examining the interlayer coupling and the related physical processes is provided by a summary of the recent research findings in 2D perovskites and TMDs. Furthermore, it would encourage more investigation into the comprehension and regulation of excitonic effects and the related optoelectronic applications in vdW heterostructures over a broad spectral response range. Finally, the current challenges and prospects are summarized in this paper.

14.
RSC Adv ; 13(33): 22936-22944, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37520089

RESUMEN

In the pursuit of developing superior energy storage devices, an integrated approach has been advocated to harness the desirable features of both batteries and supercapacitors, particularly their high energy density, and high-power density. Consequently, the emergence of hybrid supercapacitors has become a subject of increasing interest, as they offer the potential to merge the complementary attributes of these two technologies into a single device, thereby surpassing the limitations of conventional energy storage systems. In this context the Metal-Organic Frameworks (MOFs), consisting of metal centers and organic linkers, have emerged as highly trending materials for energy storage by virtue of their high porosity. Here, we investigate the electrochemical performance of cobalt-pyridine-3,5-di-carboxylate-MOF (Co-PDC-MOF) and cobalt-1,2,3,4-cyclopentane tetra-carboxylate-MOF (Co-CPTC-MOF). In the setup involving the analysis of Co-PDC-MOF and Co-CPTC-MOF materials, a configuration comprising three electrodes was utilized. Drawing upon the promising initial properties of CPTC, a battery device was fabricated, comprising Co-CPTC-MOF, and activated carbon (AC) electrodes. Retaining a reversible capacity of 97% the device showcased impressive energy and power density of 20.7 W h g-1 and 2608.5 W kg-1, respectively. Dunn's model was employed, to gain deeper insights into the capacitive and diffusive contributions of the device.

15.
Dalton Trans ; 52(18): 6166-6174, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37074031

RESUMEN

Metal-organic frameworks are a complex of metal nodes and organic ligands that have attracted widespread interest in technological applications owing to their diverse characteristics. Bi-linker MOFs can prove to be more conductive and efficient than the mono-linker MOFs, however, they have been investigated less often. In this current study two distinct organic ligands i.e., 1,2,4,5-benzene-tetra-carboxylic acid and pyridine-3,5-dicarboxylic acid were used to synthesize a bi-linker nickel MOF. The obtained Ni-P-H MOF having a unique construction was examined for its structural, morphological, and electrochemical properties. To the best of our knowledge, for the first time its potential use was specifically explored as a component in hybrid supercapacitors, as it has not been previously reported for such applications. In standard three-electrode assembly, the electrochemical properties of the Ni-P-H MOF were examined, followed by the fabrication of a Ni-P-H MOF hybrid supercapacitor with activated carbon. This hybridization results in a device with both high energy and power density, making it suitable for a variety of practical applications. To further understand the behavior of this hybrid supercapacitor, a semi-empirical technique was implemented employing Dunn's model. This model allows for the extraction of regression parameters and the quantification of the diffusive/capacitive contributions of the two-cell assembly. Overall, the combination of Ni-PMA-H2pdc MOF//activated carbon in a hybrid supercapacitor holds great potential for advancements in energy storage technology.

16.
RSC Adv ; 13(5): 2860-2870, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36756429

RESUMEN

Metal-organic frameworks (MOFs) have emerged as intriguing porous materials with diverse potential applications. Herein, we synthesized a copper-based MOF (MOF-199) and investigated its use in energy storage applications. Methods were adapted to intensify the electrochemical characteristics of MOF-199 by preparing composites with graphene and polyaniline (PANI). The specific capacity of the synthesized MOF in a three-electrode assembly was significantly enhanced from 88 C g-1 to 475 C g-1 and 766 C g-1 with the addition of graphene and polyaniline (PANI), respectively. Due to the superior performance of (MOF-199)/PANI, a hybrid supercapacitor was fabricated with the structure of (MOF-199)/PANI//activated carbon, which displayed an excellent maximum energy and power density of 64 W h kg-1 and 7200 W kg-1, respectively. The hybrid device exhibited an appreciable capacity retention of 92% after 1000 charge-discharge cycles. Moreover, using Dunn's model, the capacitive and diffusive contributions as well as the k 1 and k 2 currents of the fabricated device were calculated, validating the hybrid nature of the supercapattery device. The current studies showed that MOF-199 exhibits promising electrochemical features and can be considered as potential electrode material for hybrid energy storage devices.

17.
ACS Nano ; 17(18): 17884-17896, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37656985

RESUMEN

In future solar cell technologies, the thermodynamic Shockley-Queisser limit for solar-to-current conversion in traditional p-n junctions could potentially be overcome with a bulk photovoltaic effect by creating an inversion broken symmetry in piezoelectric or ferroelectric materials. Here, we unveiled mechanical distortion-induced bulk photovoltaic behavior in a two-dimensional (2D) material, MoTe2, caused by the phase transition and broken inversion symmetry in MoTe2. The phase transition from single-crystalline semiconducting 2H-MoTe2 to semimetallic 1T'-MoTe2 was confirmed using X-ray photoelectron spectroscopy (XPS). We used a micrometer-scale system to measure the absorption of energy, which reduced from 800 to 63 meV during phase transformation from hexagonal to distorted octahedral and revealed a smaller bandgap semimetallic behavior. Experimentally, a large bulk photovoltaic response is anticipated with the maximum photovoltage VOC = 16 mV and a positive signal of the ISC = 60 µA (400 nm, 90.4 Wcm-2) in the absence of an external electric field. The maximum values of both R and EQE were found to be 98 mAW-1 and 30%, respectively. Our findings are distinctive features of the photocurrent responses caused by in-plane polarity and its potential from a wide pool of established TMD-based nanomaterials and a cutting-edge approach to optimize the efficiency in converting photons-to-electricity for power harvesting optoelectronics devices.

18.
RSC Adv ; 13(26): 18038-18044, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37323445

RESUMEN

Transition metal dichalcogenides (TMDCs) have been explored in recent years to utilize in electronics due to their remarkable properties. This study reports the enhanced energy storage performance of tungsten disulfide (WS2) by introducing the conductive interfacial layer of Ag between the substrate and active material (WS2). The interfacial layers and WS2 were deposited through a binder free method of magnetron sputtering and three different prepared samples (WS2 and Ag-WS2) were scrutinize via electrochemical measurements. A hybrid supercapacitor was fabricated using Ag-WS2 and activated carbon (AC) since Ag-WS2 was observed to be the most proficient of all three samples. The Ag-WS2//AC devices have attained a specific capacity (Qs) of 224 C g-1, while delivering the maximum specific energy (Es) and specific power (Ps) of 50 W h kg-1 and 4003 W kg-1, respectively. The device was found to be stable enough as it retains 89% capacity and 97% coulombic efficiency after 1000 cycles. Additionally, the capacitive and diffusive currents were obtained through Dunn's model to observe the underlying charging phenomenon at each scan rate.

19.
J Colloid Interface Sci ; 646: 129-140, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37187046

RESUMEN

Metal organic frameworks (MOFs) with high porosity and highly tunable physical/chemical properties can serve as heterogeneous catalysts for CO2 photoreduction, but the application is hindered by the large band gap (Eg) and insufficient ligand-to-metal charge transfer (LMCT). In this study, a simple one-pot solvothermal strategy is proposed to prepare an amino-functionalized MOF (aU(Zr/In)) featuring an amino-functionalizing ligand linker and In-doped Zr-oxo clusters, which enables efficient CO2 reduction driven with visible light. The amino functionalization leads to a significant reduction of Eg as well as a charge redistribution of the framework, allowing the absorption of visible light and the efficient separation of photogenerated carriers. Furthermore, the incorporation of In not only promotes the LMCT process by creating oxygen vacancies in Zr-oxo clusters, but also greatly lowers the energy barrier of the intermediates for CO2-to-CO conversion. With the synergistic effects of the amino groups and the In dopants, the optimized aU(Zr/In) exhibits a CO production rate of 37.58 ± 1.06 µmol g-1 h-1, outperforming the isostructural University of Oslo-66- and Material of Institute Lavoisier-125-based photocatalysts. Our work demonstrates the potential of modifying MOFs with ligands and heteroatom dopants in metal-oxo clusters for solar energy conversion.

20.
Nanoscale ; 15(43): 17249-17269, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37859601

RESUMEN

Dye-sensitized solar cells (DSSCs) have attracted much attention as promising tools in renewable energy conversion technology. This is mainly because of their beneficial qualities, such as their impressive efficiency levels and low-cost fabrication techniques. An overview of MXene-modified electrodes in DSSCs is given in this review article. MXenes are two-dimensional (2D) transition metal carbides or nitrides with remarkable properties such as high conductivity and large surface area. MXenes' properties make them an appealing material for various applications, including energy storage, catalysis, and electronic devices. MXene integration enhances ion transport, dye adsorption, and charge transport in DSSC electrodes. In-depth analysis of the use of 2D Mxene and integration with carbon nanotubes (CNTs), reduced graphene oxide (rGO), 2D MoS2, and hybrids like 2D-2D heterostructures for electrode modification in photovoltaics (PVs), including anodes, photoanodes, composite decorated electrodes, counter electrodes (CEs), and electrolytes, is provided in this review article. The effects on the performance metrics of various deposition techniques are discussed and assessed. The use of MXene-modified electrodes in DSSCs suggests potential for enhancing the performance and efficiency of these solar cells in general. The article examines this strategy's potential advantages and implications, illuminating the fascinating advancements in the area and emphasizing MXenes' potential as a valuable substance for renewable energy applications. We also discuss the difficulties and potential benefits of using MXene-modified electrodes in DSSCs and emphasize the need for additional study to enhance stability, optimize MXene integration techniques, and enhance long-term device performance. The scalability and potential of MXene-based electrode modifications for commercial applications are also covered, addressing issues and prospects for the future, focusing on the necessity of more study. Electrodes modified with MXenes can improve DSSC performance and advance sustainable energy conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA