RESUMEN
Acer palmatum (A. palmatum), a deciduous shrub or small arbour which belongs to Acer of Aceraceae, is an excellent greening species as well as a beautiful ornamental plant. In this study, a high-quality chromosome-level reference genome for A. palmatum was constructed using Oxford Nanopore sequencing and Hi-C technology. The assembly genome was â¼745.78 Mb long with a contig N50 length of 3.20 Mb, and 95.30 % (710.71 Mb) of the assembly was anchored into 13 pseudochromosomes. A total of 28,559 protein-coding genes were obtained, â¼90.02 % (25,710) of which could be functionally annotated. The genomic evolutionary analysis revealed that A. palmatum is most closely related to A. yangbiense and A. truncatum, and underwent only an ancient gamma whole-genome duplication event. Despite lacking a recent independent WGD, 25,795 (90.32 %) genes of A. palmatum were duplicated, and the unique/expanded gene families were linked with genes involved in plant-pathogen interaction and several metabolic pathways, which might underpin adaptability. A combined genomic, transcriptomic, and metabolomic analysis related to the biosynthesis of anthocyanin in leaves during the different season were characterized. The results indicate that the dark-purple colouration of the leaves in spring was caused by a high amount of anthocyanins, especially delphinidin and its derivatives; and the red colouration of the leaves in autumn by a high amount of cyanidin 3-O-glucoside. In conclusion, these valuable multi-omic resources offer important foundations to explore the molecular regulation mechanism in leaf colouration and also provide a platform for the scientific and efficient utilization of A. palmatum.