Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 287(20): 16088-102, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22433848

RESUMEN

Important cellular processes are regulated by poly(ADP-ribosyl)ation. This protein modification is catalyzed mainly by nuclear poly(ADP-ribose) polymerase (PARP) 1 in response to DNA damage. Cytosolic PARP isoforms have been described, whereas the presence of poly(ADP-ribose) (PAR) metabolism in mitochondria is controversial. PAR is degraded by poly(ADP-ribose) glycohydrolase (PARG). Recently, ADP-ribosylhydrolase 3 (ARH3) was also shown to catalyze PAR-degradation in vitro. PARG is encoded by a single, essential gene. One nuclear and three cytosolic isoforms result from alternative splicing. The presence and origin of a mitochondrial PARG is still unresolved. We establish here the genetic background of a human mitochondrial PARG isoform and investigate the molecular basis for mitochondrial poly(ADP-ribose) degradation. In common with a cytosolic 60-kDa human PARG isoform, the mitochondrial protein did not catalyze PAR degradation because of the absence of exon 5-encoded residues. In mice, we identified a transcript encoding an inactive cytosolic 52-kDa PARG lacking the mitochondrial targeting sequence and a substantial portion of exon 5. Thus, mammalian PARG genes encode isoforms that do not catalyze PAR degradation. On the other hand, embryonic fibroblasts from ARH3(-/-) mice lack most of the mitochondrial PAR degrading activity detected in wild-type cells, demonstrating a potential involvement of ARH3 in PAR metabolism.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Glicósido Hidrolasas/metabolismo , Mitocondrias/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Células 3T3 , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Exones/fisiología , Proteínas Activadoras de GTPasa/genética , Glicósido Hidrolasas/genética , Células HeLa , Células Hep G2 , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Mitocondrias/genética , Poli Adenosina Difosfato Ribosa/genética
2.
J Biol Chem ; 285(24): 18868-76, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20388704

RESUMEN

Several important signaling pathways require NAD as substrate, thereby leading to significant consumption of the molecule. Because NAD is also an essential redox carrier, its continuous resynthesis is vital. In higher eukaryotes, maintenance of compartmentalized NAD pools is critical, but so far rather little is known about the regulation and subcellular distribution of NAD biosynthetic enzymes. The key step in NAD biosynthesis is the formation of the dinucleotide by nicotinamide/nicotinic acid mononucleotide adenylyltransferases (NMNATs). The three human isoforms were localized to the nucleus, the Golgi complex, and mitochondria. Here, we show that their genes contain unique exons that encode isoform-specific domains to mediate subcellular targeting and post-translational modifications. These domains are dispensable for catalytic activity, consistent with their absence from NMNATs of lower organisms. We further demonstrate that the Golgi-associated NMNAT is palmitoylated at two adjacent cysteine residues of its isoform-specific domain and thereby anchored at the cytoplasmic surface, a potential mechanism to regulate the cytosolic NAD pool. Insertion of unique domains thus provides a yet unrecognized enzyme targeting mode, which has also been adapted to modulate subcellular NAD supply.


Asunto(s)
Nicotinamida-Nucleótido Adenililtransferasa/química , Núcleo Celular/metabolismo , Cisteína/química , Citosol/metabolismo , Metabolismo Energético , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Mitocondrias/metabolismo , Modelos Biológicos , Isoformas de Proteínas , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Proteínas/metabolismo , Transducción de Señal
3.
Redox Rep ; 15(1): 2-10, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20196923

RESUMEN

Recent research has unraveled a number of unexpected functions of the pyridine nucleotides. In this review, we will highlight the variety of known physiological roles of NADP. In its reduced form (NADPH), this molecule represents a universal electron donor, not only to drive biosynthetic pathways. Perhaps even more importantly, NADPH is the unique provider of reducing equivalents to maintain or regenerate the cellular detoxifying and antioxidative defense systems. The roles of NADPH in redox sensing and as substrate for NADPH oxidases to generate reactive oxygen species further extend its scope of functions. NADP(+), on the other hand, has acquired signaling functions. Its conversion to second messengers in calcium signaling may have critical impact on important cellular processes. The generation of NADP by NAD kinases is a key determinant of the cellular NADP concentration. The regulation of these enzymes may, therefore, be critical to feed the diversity of NADP-dependent processes adequately. The increasing recognition of the multiple roles of NADP has thus led to exciting new insights in this expanding field.


Asunto(s)
NADP/fisiología , Animales , Señalización del Calcio/fisiología , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , NAD+ Nucleosidasa/metabolismo , NADPH Oxidasas/metabolismo , Estrés Oxidativo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA