Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Trends Immunol ; 38(4): 261-271, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28196749

RESUMEN

Pyroptosis is an inflammatory form of cell death that not only protects multicellular organisms from invading pathogenic bacteria and microbial infections, but can also lead to sepsis and lethal septic shock if overactivated. Here, we present an overview of recent developments within the pyroptosis field, beginning with the discovery of Gasdermin D (GSDMD) as a substrate of caspase-1 and caspase-11 upon detection of cytosolic lipopolysaccharide (LPS). Cleavage releases the N-terminal domain of GSDMD, causing it to form cytotoxic pores in the plasma membrane of cells. We further discuss the implications for the rest of the gasdermin (GSDM) family, which are emerging as mediators of programmed cell death in a variety of processes that regulate cellular differentiation and proliferation.


Asunto(s)
Infecciones/inmunología , Inflamación/inmunología , Piroptosis/inmunología , Choque Séptico/inmunología , Animales , Caspasa 1/metabolismo , Caspasas/metabolismo , Caspasas Iniciadoras , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Proteínas de Neoplasias/metabolismo , Proteínas de Unión a Fosfato
2.
Proc Natl Acad Sci U S A ; 113(28): 7858-63, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27339137

RESUMEN

Gasdermin-D (GsdmD) is a critical mediator of innate immune defense because its cleavage by the inflammatory caspases 1, 4, 5, and 11 yields an N-terminal p30 fragment that induces pyroptosis, a death program important for the elimination of intracellular bacteria. Precisely how GsdmD p30 triggers pyroptosis has not been established. Here we show that human GsdmD p30 forms functional pores within membranes. When liberated from the corresponding C-terminal GsdmD p20 fragment in the presence of liposomes, GsdmD p30 localized to the lipid bilayer, whereas p20 remained in the aqueous environment. Within liposomes, p30 existed as higher-order oligomers and formed ring-like structures that were visualized by negative stain electron microscopy. These structures appeared within minutes of GsdmD cleavage and released Ca(2+) from preloaded liposomes. Consistent with GsdmD p30 favoring association with membranes, p30 was only detected in the membrane-containing fraction of immortalized macrophages after caspase-11 activation by lipopolysaccharide. We found that the mouse I105N/human I104N mutation, which has been shown to prevent macrophage pyroptosis, attenuated both cell killing by p30 in a 293T transient overexpression system and membrane permeabilization in vitro, suggesting that the mutants are actually hypomorphs, but must be above certain concentration to exhibit activity. Collectively, our data suggest that GsdmD p30 kills cells by forming pores that compromise the integrity of the cell membrane.


Asunto(s)
Proteínas de Neoplasias/fisiología , Piroptosis , Animales , Caspasas/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Liposomas , Ratones , Mutación , Proteínas de Unión a Fosfato
3.
Structure ; 21(9): 1571-80, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23911090

RESUMEN

Removal of the 5' cap structure by Dcp2 is a major step in several 5'-3' mRNA decay pathways. The activity of Dcp2 is enhanced by Dcp1 and bound coactivators, yet the details of how these interactions are linked to chemistry are poorly understood. Here, we report three crystal structures of the catalytic Nudix hydrolase domain of Dcp2 that demonstrate binding of a catalytically essential metal ion, and enzyme kinetics are used to identify several key active site residues involved in acid/base chemistry of decapping. Using nuclear magnetic resonance and molecular dynamics, we find that a conserved metal binding loop on the catalytic domain undergoes conformational changes during the catalytic cycle. These findings describe key events during the chemical step of decapping, suggest local active site conformational changes are important for activity, and provide a framework to explain stimulation of catalysis by the regulatory domain of Dcp2 and associated coactivators.


Asunto(s)
Endorribonucleasas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Sustitución de Aminoácidos , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Endorribonucleasas/genética , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Procesamiento Postranscripcional del ARN , ARN de Hongos/química , ARN de Hongos/genética , ARN Mensajero/química , ARN Mensajero/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA